Decrypt TLS traffic with certificates and private keys

Published: 2025-01-10

You can decrypt forwarded TLS traffic by uploading the private key and server certificate associated with that traffic. The certificate and key are uploaded over an HTTPS connection from a web browser to the ExtraHop system.

After upload, private keys are encrypted and stored on the ExtraHop system. To ensure that private keys are not transferable to other systems, they are encrypted with an internal key that has information specific to the system to which it was uploaded.

Separation of privileges is enforced so that only the TLS decryption process on the system can access the private keys. While you can add new private keys through the Administration settings, you cannot access stored private keys.

Note: Your traffic must be encrypted with a supported cipher suite. Learn more about TLS decryption ☑.

Upload a PEM certificate and RSA private key

Tip: You can export a password-protected key to add to your ExtraHop system by running the following command on a program such as OpenSSL:

openssl rsa -in yourcert.pem -out new.key

- 1. Log in to the Administration settings on the ExtraHop system through https://extrahop-hostname-or-IP-address>/admin.
- 2. In the System Configuration section, click **Capture**.
- Click SSL Decryption.
- 4. In the Private Key Decryption section, select the checkbox for **Require Private Keys**.
- Click Save.
- In the Private Keys section, click Add Keys.
- 7. In the Name field, type a descriptive name to identify this certificate and key.
- 8. Clear the **Enabled** checkbox if you want to disable this TLS certificate.
- 9. In the Certificate field, paste the public key certificate.
- 10. In the Private Key field, paste the RSA private key.
- 11. Click Add.

Next steps

Add the encrypted protocols you want to decrypt with this certificate.

Upload a PKCS#12/PFX file

PKCS#12/PFX files are archived in a secure container on the ExtraHop system and contains both public and private key pairs, which can only be accessed with a password.

Tip: To export private keys from a Java KeyStore to a PKCS#12 file, run the following command on your server, where <code>javakeystore.jks</code> is the path of your Java KeyStore:

keytool -importkeystore -srckeystore javakeystore.jks - destkeystore

pkcs.p12 -srcstoretype jks -deststoretype pkcs12

- 1. Log in to the Administration settings on the ExtraHop system through https://cextrahophostname-or-IP-address>/admin.
- 2. In the System Configuration section, click **Capture**.
- 3. Click **SSL Decryption**.
- 4. In the Private Key Decryption section, select the checkbox for **Require Private Keys**.
- Click Save.
- 6. In the Private Keys section, click **Add Keys**.
- 7. In the Add PKCS#12/PFX File With Password section, in the Description field, type a descriptive name to identify this certificate and key.
- 8. Clear the **Enabled** checkbox if you want to disable this TLS certificate.
- For PKCS#12/PFX file, click Browse.
- 10. Browse to the file and select it, then click **Open**.
- 11. In the Password field, type the password for the PKCS#12/PFX file.
- 12. Click Add.
- 13. Click **OK**.

Next steps

Add the encrypted protocols you want to decrypt with this certificate.

Add encrypted protocols

You must add each protocol that you want to decrypt for each uploaded certificate.

- 1. Log in to the Administration settings on the ExtraHop system through https://<extrahophostname-or-IP-address>/admin.
- 2. In the System Configuration section, click **Capture**.
- Click SSL Decryption.
- 4. In the Protocol to Port Mapping by Key section, click **Add Protocol**.
- 5. From the **Protocol** drop-down menu, select the protocol you want to decrypt.
- 6. From the **Key** drop-down menu, select an uploaded private key.
- 7. In the Port field, type the source port for the protocol. The default value is 443, which specifies HTTP traffic. Specify 0 to decrypt all protocol traffic.
- Click Add.

Supported TLS cipher suites

The ExtraHop system can decrypt TLS traffic that has been encrypted with PFS or RSA cipher suites. All supported cipher suites can be decrypted by installing the session key forwarder on a server and configuring the ExtraHop system.

Cipher suites for RSA can also decrypt the traffic with a certificate and private key—with or without session key forwarding.

Decryption methods

The table below provides a list of cipher suites that the ExtraHop system can decrypt I along with the supported decryption options.

PFS + GPP: the ExtraHop system can decrypt these cipher suites with session key forwarding and global protocol to port mapping <a>I

- PFS + Cert: the ExtraHop system can decrypt these cipher suites with session key forwarding and the certificate and private key
- **RSA + Cert**: the ExtraHop system can decrypt these cipher suites without session key forwarding as long as you have uploaded the certificate and private key

Hex Value	Name (IANA)	Name (OpenSSL)	Supported Decryption
0x04	TLS_RSA_WITH_RC4_128_MD5	RC4-MD5	PFS + GPP PFS + Cert RSA + Cert
0x05	TLS_RSA_WITH_RC4_128_SHA	RC4-SHA	PFS + GPP PFS + Cert RSA + Cert
0x0A	TLS_RSA_WITH_3DES_EDE_CBC_SHA	DES-CBC3-SHA	PFS + GPP PFS + Cert RSA + Cert
0x16	TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA	EDH-RSA-DES- CBC3-SHA	PFS + GPP PFS + Cert
0x2F	TLS_RSA_WITH_AES_128_CBC_SHA	AES128-SHA	PFS + GPP PFS + Cert RSA + Cert
0x33	TLS_DHE_RSA_WITH_AES_128_CBC_SHA	DHE-RSA-AES128- SHA	PFS + GPP PFS + Cert
0x35	TLS_RSA_WITH_AES_256_CBC_SHA	AES256-SHA	PFS + GPP PFS + Cert RSA + Cert
0x39	TLS_DHE_RSA_WITH_AES_256_CBC_SHA	DHE-RSA-AES256- SHA	PFS + GPP PFS + Cert
0x3C	TLS_RSA_WITH_AES_128_CBC_SHA256	AES128-SHA256	PFS + GPP PFS + Cert RSA + Cert
0x3D	TLS_RSA_WITH_AES_256_CBC_SHA256	AES256-SHA256	PFS + GPP PFS + Cert RSA + Cert
0x67	TLS_DHE_RSA_WITH_AES_128_CBC_SHA256	DHE-RSA-AES128- SHA256	PFS + GPP PFS + Cert
0x6B	TLS_DHE_RSA_WITH_AES_256_CBC_SHA256	DHE-RSA-AES256- SHA256	PFS + GPP PFS + Cert
0x9C	TLS_RSA_WITH_AES_128_GCM_SHA256	AES128-GCM- SHA256	PFS + GPP PFS + Cert RSA + Cert
0x9D	TLS_RSA_WITH_AES_256_GCM_SHA384	AES256-GCM- SHA384	PFS + GPP PFS + Cert RSA + Cert
0x9E	TLS_DHE_RSA_WITH_AES_128_GCM_SHA256	DHE-RSA-AES128- GCM-SHA256	PFS + GPP PFS + Cert

Hex Value	Name (IANA)	Name (OpenSSL)	Supported Decryption
0x9F	TLS_DHE_RSA_WITH_AES_256_GCM_SHA384	DHE-RSA-AES256- GCM-SHA384	PFS + GPP PFS + Cert
0x1301	TLS_AES_128_GCM_SHA256	TLS_AES_128_GCM_	SIPA256GPP PFS + Cert
0x1302	TLS_AES_256_GCM_SHA384	TLS_AES_256_GCM_	SIPAS84GPP PFS + Cert
0x1303	TLS_CHACHA20_POLY1305_SHA256	TLS_CHACHA20_PO	L YPF305 <u>C</u>9PPA/25 56 + Cert
0xC007	TLS_ECDHE_ECDSA_WITH_RC4_128_SHA	ECDHE-ECDSA- RC4-SHA	PFS + GPP
0xC008	TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA	A ECDHE-ECDSA- DES-CBC3-SHA	PFS + GPP
0xC009	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA	ECDHE-ECDSA- AES128-SHA	PFS + GPP
0xC00A	TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA	ECDHE-ECDSA- AES256-SHA	PFS + GPP
0xC011	TLS_ECDHE_RSA_WITH_RC4_128_SHA	ECDHE-RSA-RC4- SHA	PFS + GPP PFS + Cert
0xC012	TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA	ECDHE-RSA-DES- CBC3-SHA	PFS + GPP PFS + Cert
0xC013	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA	ECDHE-RSA- AES128-SHA	PFS + GPP PFS + Cert
0xC014	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA	ECDHE-RSA- AES256-SHA	PFS + GPP PFS + Cert
0xC023	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA2	5 6 CDHE-ECDSA- AES128-SHA256	PFS + GPP
0xC024	TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA3	8 B CDHE-ECDSA- AES256-SHA384	PFS + GPP
0xC027	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256	ECDHE-RSA- AES128-SHA256	PFS + GPP PFS + Cert
0xC028	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384	ECDHE-RSA- AES256-SHA384	PFS + GPP PFS + Cert
0xC02B	TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA2	2 56 DHE-ECDSA- AES128-GCM- SHA256	PFS + GPP
0xC02C	TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHAC	3 Æ€ DHE-ECDSA- AES256-GCM- SHA384	PFS + GPP
0xC02F	TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	ECDHE-RSA- AES128-GCM- SHA256	PFS + GPP PFS + Cert

Hex Value	Name (IANA)	Name (OpenSSL)	Supported Decryption
0xC030	TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384	4 ECDHE-RSA- AES256-GCM- SHA384	PFS + GPP PFS + Cert
0xCCA8	TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305	_\$HCAX2566-RSA- CHACHA20- POLY1305	PFS + GPP PFS + Cert
0xCCA9	TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY13	80 5<u>C</u>13HHA256 DSA- CHACHA20- POLY1305	PFS + GPP
0xCCAA	TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SI	H A2156 -RSA- CHACHA20- POLY1305	PFS + GPP PFS + Cert