
© 2024ExtraHop Networks, Inc. All rights reserved.

Enable detection tracking
Published: 2024-09-03

Detection tracking enables you to assign a detection to a user, set the status, and add notes. You can
track detections directly in the ExtraHop system, with a third-party external ticketing system, or with both
methods.

Note: You must enable ticket tracking on all connected sensors.

Before you begin

• You must have access to an ExtraHop system with a user account that has Administration privileges .
• After you enable external ticket tracking, you must configure third-party ticket tracking by writing

a trigger to create and update tickets on your ticketing system, then enable ticket updates on your
ExtraHop system through the REST API.

• If you disable external ticket tracking, previously stored status and assignee ticket information is
converted to ExtraHop detection tracking. If detection tracking from within the ExtraHop system
is enabled, you will be able to view tickets that already existed when you disabled external ticket
tracking, but changes to that external ticket will not appear in the ExtraHop system.

1. Log in to the Administration settings on the ExtraHop system through https://<extrahop-
hostname-or-IP-address>/admin.

2. In the System Configuration section, click Detection Tracking.
3. From the Overview page, click System Settings and then click All Administration.
4. From the Console Settings section, click Detection Tracking.
5. Select one or both of the following methods for tracking detections:

• Select Enable ExtraHop users to track detections from within the ExtraHop system.
• Select Enable external integrations, such as SOAR or ticket tracking systems, to track detections

through the ExtraHop Rest API.
6. Optional: After you select the option to enable external integrations, specify the URL template for

your ticketing system and add the $ticket_id variable at the appropriate location. For example, type
a complete URL such as https://jira.example.com/browse/$ticket_id. The $ticket_id
variable is replaced with the ticket ID associated with the detection.
After the URL template is configured, you can click the ticket ID in a detection to open the ticket in a
new browser tab.

Next steps

https://docs.extrahop.com/9.8/users-overview/#user-privileges

Enable detection tracking 2

If you enabled external ticket tracking integrations, you must continue on to the following task:

• Configure third-party ticket tracking for detections

Configure third-party ticket tracking for detections
Ticket tracking enables you to connect tickets, alarms, or cases in your work-tracking system to ExtraHop
detections. Any third-party ticketing system that can accept Open Data Stream (ODS) requests, such as Jira
or Salesforce, can be linked to ExtraHop detections.

Before you begin

• You must have selected the third-party detection tracking option in Administration settings.
• You must have access to an ExtraHop system with a user account that has System and Access

Administration privileges .
• You must be familiar with writing ExtraHop Triggers. See Triggers and the procedures in Build a

trigger .
• You must create an ODS target for your ticket tracking server. See the following topics about

configuring ODS targets: HTTP , Kafka , MongoDB , syslog , or raw data .
• You must be familiar with writing REST API scripts and have a valid API key to complete the

procedures below. See Generate an API key .

Write a trigger to create and update tickets about detections on your ticketing system
This example shows you how to create a trigger that performs the following actions:

• Create a new ticket in the ticketing system every time a new detection appears on the ExtraHop
system.

• Assign new tickets to a user named escalations_team in the ticketing system.
• Run every time a detection is updated on the ExtraHop system.
• Send detection updates over an HTTP Open Data Stream (ODS) to the ticketing system.

The complete example script is available at the end of this topic.

1. Log in to the ExtraHop system through https://<extrahop-hostname-or-IP-address>.
2. Click the System Settings icon and then click Triggers.
3. Click New.
4. Specify a name and optional description for the trigger.
5. From the Events list, select DETECTION_UPDATE.

The DETECTION_UPDATE event runs every time that a detection is created or updated in the
ExtraHop system.

6. In the right pane, specify Detection class parameters in a JavaScript object. These parameters
determine the information that is sent to your ticketing system.
The following example code adds the detection ID, description, title, categories, MITRE techniques and
tactics, and risk score to a JavaScript object called payload:

const summary = "ExtraHop Detection: " + Detection.id + ": " +
 Detection.title;
const description = "ExtraHop has detected the following event on your
 network: " + Detection.description
const payload = {
 "fields": {
 "summary": summary,
 "assignee": {
 "name": "escalations_team"
 },
 "reporter": {
 "name": "ExtraHop"

https://docs.extrahop.com/9.8/users-overview/#user-privileges
https://docs.extrahop.com/9.8/users-overview/#user-privileges
https://docs.extrahop.com/9.8/triggers-overview
https://docs.extrahop.com/9.8/triggers-build
https://docs.extrahop.com/9.8/triggers-build
https://docs.extrahop.com/9.8/ods-http
https://docs.extrahop.com/9.8/ods-kafka
https://docs.extrahop.com/9.8/ods-mongodb
https://docs.extrahop.com/9.8/ods-syslog
https://docs.extrahop.com/9.8/ods-raw
https://docs.extrahop.com/9.8/rest-api-guide/#generate-an-api-key
https://docs.extrahop.com/9.8/extrahop-trigger-api/#detection

Enable detection tracking 3

 },
 "priority": {
 "id": Detection.riskScore
 },
 "labels": Detection.categories,
 "mitreCategories": Detection.mitreCategories,
 "description": description
 }
};

7. Next, define the HTTP request parameters in a JavaScript object below the previous JavaScript object.
The following example code defines an HTTP request for the payload described in the previous
example: defines a request with a JSON payload:

const req = {
 'path': '/rest/api/issue',
 'headers': {
 'Content-Type': 'application/json'
 },
 'payload': JSON.stringify(payload)
};

For more information about ODS request objects, see Open data stream classes .
8. Finally, specify the HTTP POST request that sends the information to the ODS target. The following

example code sends the HTTP request described in the previous example to an ODS target named
ticket-server:

Remote.HTTP('ticket-server').post(req);

The complete trigger code should look similar to the following example:

const summary = "ExtraHop Detection: " + Detection.id + ": " +
 Detection.title;
const description = "ExtraHop has detected the following event on your
 network: " + Detection.description
const payload = {
 "fields": {
 "summary": summary,
 "assignee": {
 "name": "escalations_team"
 },
 "reporter": {
 "name": "ExtraHop"
 },
 "priority": {
 "id": Detection.riskScore
 },
 "labels": Detection.categories,
 "mitreCategories": Detection.mitreCategories,
 "description": description
 }
};

const req = {
 'path': '/rest/api/issue',
 'headers': {
 'Content-Type': 'application/json'
 },
 'payload': JSON.stringify(payload)
};

https://docs.extrahop.com/9.8/extrahop-trigger-api/#open-data-stream-classes

Enable detection tracking 4

Remote.HTTP('ticket-server').post(req);

Send ticket information to detections through the REST API
After you have configured a trigger to create tickets for detections in your ticket tracking system, you can
update ticket information on your ExtraHop system through the REST API.

Ticket information appears in detections on the Detections page in the ExtraHop system. For more
information, see the Detections topic.

The following example Python script takes ticket information from a Python array and updates the
associated detections on the ExtraHop system.

#!/usr/bin/python3

import json
import requests
import csv

API_KEY = '123456789abcdefghijklmnop'
HOST = 'https://extrahop.example.com/'

Method that updates detections on an ExtraHop system
def updateDetection(detection):
 url = HOST + 'api/v1/detections/' + detection['detection_id']
 del detection['detection_id']
 data = json.dumps(detection)
 headers = {'Content-Type': 'application/json',
 'Accept': 'application/json',
 'Authorization': 'ExtraHop apikey=%s' % API_KEY}
 r = requests.patch(url, data=data, headers=headers)
 print(r.status_code)
 print(r.text)

Array of detection information
detections = [
 {
 "detection_id": "1",
 "ticket_id": "TK-16982",
 "status": "new",
 "assignee": "sally",
 "resolution": None,
 },
 {
 "detection_id": "2",
 "ticket_id": "TK-2078",
 "status": None,
 "assignee": "jim",
 "resolution": None,
 },
 {
 "detection_id": "3",
 "ticket_id": "TK-3452",
 "status": None,
 "assignee": "alex",
 "resolution": None,
 }
]

for detection in detections:
 updateDetection(detection)

https://docs.extrahop.com/9.8/detections-overview

Enable detection tracking 5

Note: If the script returns an error message that the TLS certificate verification failed, make sure
that a trusted certificate has been added to your sensor or console . Alternatively, you can
add the verify=False option to bypass certificate verification. However, this method
is not secure and is not recommended. The following code sends an HTTP GET request
without certificate verification:

requests.get(url, headers=headers, verify=False)

After ticket tracking is configured, ticket details are displayed in the
left pane of the detection details, similar to the following figure:

Status
The status of the ticket associated with the detection. Ticket tracking supports the following
statuses:

• New
• In Progress
• Closed
• Closed with Action Taken
• Closed with No Action Taken

Ticket ID
The ID of the ticket in your work-tracking system that is associated with the detection. If you have
configured a template URL, you can click the ticket ID to open the ticket in your work-tracking
system.

Assignee
The username assigned to the ticket associated with the detection. Usernames in gray indicate a
non-ExtraHop account.

https://docs.extrahop.com/9.8/eh-admin-ui-guide/#tls-certificate

	Enable detection tracking
	Configure third-party ticket tracking for detections
	Write a trigger to create and update tickets about detections on your ticketing system
	Send ticket information to detections through the REST API

