
© 2023ExtraHop Networks, Inc. All rights reserved.

Add observations through the REST API
Published: 2023-04-22

Observations enable you to associate two or more IP addresses. For example, you can add an observation
that tracks the activity of a VPN user by reading VPN logs and then associating the IP address of the
VPN client on your network with the external IP address assigned to the user on the internet. This guide
provides instructions for adding an observation through the ExtraHop REST API Explorer and through a
Python script.

Before you begin

• You must log in to the sensor with an account that has full write privileges to generate an API key.
• You must have a valid API key to make changes through the REST API and complete the procedures

below. (See Generate an API key .)
• Familiarize yourself with the ExtraHop REST API Guide to learn how to navigate the ExtraHop REST

API Explorer.

Add observations through the REST API Explorer
Important: The REST API Explorer is not available on Reveal(x) 360.

1. In a browser, navigate to the REST API Explorer.
The URL is the hostname or IP address of your sensor, followed by /api/v1/explore/. For example,
if your hostname is seattle-eda, the URL is https://seattle-eda/api/v1/explore/.

2. Click Enter API Key and then paste or type your API key into the API Key field.
3. Click Authorize and then click Close.
4. Click Observations and then click POST /observations/associatedipaddrs.
5. Click Try it out.

The JSON schema is automatically added to the body parameter text box.
6. In the body text box, specify the observations you want to add.

For example, the following fields associate 10.8.0.0 with 108.162.0.0:

{
 "observations": [
 {
 "associated_ipaddr": "108.162.0.0",
 "ipaddr": "10.8.0.0",
 "timestamp": 1257935231
 }
],
 "source": "OpenVPN"
}

7. Click Send Request.

Retrieve and run the example Python script
The ExtraHop GitHub repository contains an example Python script that creates associations on the
ExtraHop system based on a CSV log file from OpenVPN. You can configure the script to read other CSV
files by modifying the IPADDR, ASSOCIATED_IPADDR, and TIMESTAMP variables, which specify the names
of the CSV columns that the script reads.

1. Go to the ExtraHop code-examples GitHub repository and download the add_observations/
add_observations.py file to your local machine.

https://docs.extrahop.com/9.3/rest-api-guide/#generate-an-api-key
https://docs.extrahop.com/9.3/rest-api-guide
https://github.com/ExtraHop/code-examples/tree/main/add_observations

Add observations through the REST API 2

2. In a text editor, open the add_observations.py file and replace the following configuration
variables with information from your environment:

• HOST: The IP address or hostname of the sensor.

• API_KEY: The API key.

• CSV_FILE: The name of the CSV log file.

• SOURCE: The source of the observations.

• IPADDR: The name of the column in the CSV file that specifies the IP addresses of the VPN clients
on your internal network.

• ASSOCIATED_IPADDR: The name of the column in the CSV file that specifies the external IP
addresses assigned to the users on the public internet.

• TIMESTAMP: The name of the column in the CSV file that specifies the time that the observation
was created by the source. By default, the timestamp must be in the format: Month/Day/Year
Hour:Minute:Second. However, you can change the format by modifying the pattern variable in
the translateTime() function.

Tip: If the log file distributes timestamp values over multiple columns, you can modify the
timestamp field in the readCSV() function to concatenate the values. For example,

assume that the first four columns of the CSV file are organized as shown in the following
table:

01 01 01 10:10:10

Month Day Year Time
The following code reads those first four columns into the default translateTime() function:

'timestamp': translateTime(row[0] + '/' + row[1] + '/' + row[2] +

 ' ' + row[3])

3. Run the following command:

python3 add_observations.py

Note: If the script returns an error message that the SSL certificate verification failed, make
sure that a trusted certificate has been added to your sensor or console . Alternatively,
you can add the verify=False option to bypass certificate verification. However, this
method is not secure and not recommended. The following code sends an HTTP GET
request without certificate verification:

requests.get(url, headers=headers, verify=False)

https://docs.extrahop.com/9.3/eh-admin-ui-guide/#ssl-certificate

	Add observations through the REST API
	Add observations through the REST API Explorer
	Retrieve and run the example Python script

