
© 2023 ExtraHop Networks, Inc. All rights reserved.

Build a trigger to collect custom metrics for
HTTP 404 errors
Published: 2023-07-13

When your customers and clients cannot reach the information they need due to web page errors, you can
write a trigger to help you find answers.

For example, when a customer requests a page that your HTTP server cannot find, the server responds with
a 404 status code, or “page not found” error. Such responses tend to indicate that the link the customer
clicked leads to an invalid URI. It would be useful to know what URI customers are trying to access and to
find the referrer, or source, of the invalid link.

In this walkthrough, you will build a trigger that answers the following questions:

• Are my customers receiving "page not found" errors?
• What is the URI of the page that results in the error?
• What is the referrer that caused the error?

You will create a trigger that generates a new custom metric that returns both the invalid URI and the
referrer of the invalid URI. You will also create an application that provides a tailored view of your web
traffic by collecting web metrics each time a 404 status code occurs on specified devices.

Prerequisites
• You should familiarize yourself with the concepts in this walkthrough by reading the Get started with

triggers section of the ExtraHop System User Guide .
• You must have access to an ExtraHop system with a user account that has limited write or full write

privileges .
• Your ExtraHop system must have network data with web server traffic.
• It is helpful to have basic JavaScript knowledge.

Configure the trigger
In the following steps, you will name and describe the trigger, enable debugging, and configure the trigger
to run on HTTP response events.

1. Click the System Settings icon , and then click Triggers.
2. Click Create.
3. Type a name for the trigger. For this walkthrough, type HTTP 404 Errors.
4. Type a description of the trigger. For this walkthrough, type Track 404 errors back to the

source.
5. Click Enable debug log.
6. Click in the Events field and select HTTP_RESPONSE from the list.

The following figure displays the trigger configuration attributes you configured above:

https://docs.extrahop.com/9.2/eh-web-ui-guide/#get-started-with-triggers
https://docs.extrahop.com/9.2/eh-web-ui-guide/#get-started-with-triggers
https://docs.extrahop.com/9.2/eh-web-ui-guide/
https://docs.extrahop.com/9.2/users-overview/#user-privileges
https://docs.extrahop.com/9.2/users-overview/#user-privileges

Build a trigger to collect custom metrics for HTTP 404 errors 2

Write a debug statement
Next, add a simple debug statement to familiarize yourself with the trigger editor layout and features.

When the trigger runs, it seeks HTTP response events and checks if the status code in the response is
404. If a 404 status code is detected, the debug call adds the URL that the user attempted to access to the
debug log.

1. Click the Editor tab.
2. Add the following code to the editor:

if (HTTP.statusCode === 404) {
 debug (HTTP.uri);
}

Tip: The editor provides some autocomplete capabilities when typing code. For example,
typing a dot (.) after selecting a class object results in a list of methods and properties
applicable to the HTTP object. You can select the element you want from the list as
shown in the following figure:

Build a trigger to collect custom metrics for HTTP 404 errors 3

Clicking the i icon displays a description of the current element, as shown in the following
figure:

3. Click Save and Close.

Assign the trigger to devices
Before the trigger can log output from the debug statement, you must assign the trigger to at least one
device. For this walkthrough, you will assign the trigger to the HTTP server device group.

After the trigger is assigned, the system runs the trigger each time an HTTP response occurs on any server
in that group.

Important: When creating your own triggers, only assign triggers to the specific devices that you
need to minimize the performance impact of your triggers on the system.

1. Click Assets from the top menu.
2. Click Device Groups, and then select HTTP Servers checkbox.
3. Click Assign Trigger from the top of the page to open a list of triggers that are eligible for assignment.
4. Select the HTTP 404 Errors trigger, and then click Assign Triggers.
5. Click the System Settings icon, return to the Triggers page, and select the HTTP 404 Errors trigger .
6. In the Assignments field, verify that the selected HTTP servers are added.

The field should look similar to the following figure:

Build a trigger to collect custom metrics for HTTP 404 errors 4

View debug output
After you assign the trigger to HTTP servers, the system runs the trigger when HTTP response traffic
occurs, and if any responses contain a 404 status code the system sends results to the debug log.

To view the results of the debug statement, click the Debug Log tab, which should look similar to the
following figure:

Debug output starts as soon as the trigger is assigned and saved; however, the log cannot display data from
404 responses that occurred prior to when the trigger was assigned and saved.

Create a custom metric
The debug statement results have verified that there are URIs resulting in 404 status codes. In this section,
you will create a custom metric named "404UriAndReferrer" to extract the invalid URIs and corresponding
referrers.

The custom metric will return both the invalid URI and the referrer of the link enabling you to extract the
two data sets in a single result.

To create a custom metric, you must specify a metric source from which the data is extracted, such as an
application, network, or device. In this walkthrough, you will create an application named “File Not Found”
as the source for the custom metric.

1. In the right pane, add the following trigger code, highlighted in green, to the existing script:

if (HTTP.statusCode === 404){
 debug (HTTP.uri);
 var app = Application("File Not Found");
}

This code declares the application as a variable and specifies the application name. We recommend
that you declare a variable for methods that you intend to call more than once to reduce resource
consumption by the trigger. In this walkthrough, the code will call the application twice.

2. Add the following trigger code, highlighted in green, to the existing script:

if (HTTP.statusCode === 404){

Build a trigger to collect custom metrics for HTTP 404 errors 5

 debug (HTTP.uri);
 var app = Application("File Not Found");
 app.metricAddDetailCount(
 "404UriAndReferrer",
 "404:" + HTTP.uri + " | REFERRER:" + HTTP.referer,
 1);
}

The metricAddDetailCount method specifies the metric name and the event property data
returned by the metric. The method also specifies the format of the extracted data as 404: <uri> |
REFERRER: <uri> when displayed in a chart. See the Application section of the ExtraHop Trigger
API Reference for more information about custom metric methods.

3. Click Save.

After the code is saved, the ExtraHop system adds the new custom metric to the Metric Catalog and
creates the application. At this point, the application is a source for the custom metric only; the application
does not collect built-in metrics. See the Metric Catalog section of the ExtraHop System User Guide
and the Application section of the ExtraHop Trigger API Reference for more information.

View the custom metric in a chart
To view your custom metric, you must to add it to a chart widget on a dashboard. In the chart, the custom
metric will reveal which URIs are invalid and the referrer of each invalid link.

For more information about viewing metrics on a dashboard, see the Get started with dashboards section
of the ExtraHop System User Guide .

1. On the Dashboard page, click the command menu in the upper right corner, and select Create Chart.
2. Click the empty chart widget in your newly created dashboard to launch the Metric Explorer.
3. Click Add Source.
4. Type and select File Not Found, which is the application created by the trigger.
5. In the Metrics field, type 404 and then select 404 Uri and Referrer, which is the custom metric created

by the trigger.

Note: The ExtraHop system converts the custom metric name you specified in the code to a
friendly display name. In this walkthrough, “404UriAndReferrer” is converted to “404
Uri And Referrer”. You can edit the friendly display name in the Metric Catalog. See the
Metric Catalog section of the ExtraHop System User Guide for more information.

6. Select the Bar chart type from the bottom of the Metric Explorer.
7. In the lower right corner, click Add to Dashboard and select Create Dashboard.
8. Type a name for your dashboard in the Title field. For this walkthrough, type HTTP 404 Errors.
9. Click Create.

The chart containing data extracted from the custom metric is automatically added to the new dashboard.
The dashboard output should look similar to the following figure:

https://docs.extrahop.com/9.2/extrahop-trigger-api/#application
https://docs.extrahop.com/9.2/extrahop-trigger-api/
https://docs.extrahop.com/9.2/extrahop-trigger-api/
https://docs.extrahop.com/9.2/eh-web-ui-guide/#metric-catalog
https://docs.extrahop.com/9.2/eh-web-ui-guide/
https://docs.extrahop.com/9.2/extrahop-trigger-api/#application
https://docs.extrahop.com/9.2/extrahop-trigger-api/
https://docs.extrahop.com/9.2/eh-web-ui-guide/#get-started-with-dashboards
https://docs.extrahop.com/9.2/eh-web-ui-guide/
https://docs.extrahop.com/9.2/eh-web-ui-guide/#metric-catalog
https://docs.extrahop.com/9.2/eh-web-ui-guide/

Build a trigger to collect custom metrics for HTTP 404 errors 6

Gather built-in metrics in the application
In the previous steps, you added code to the script to create an application as the source of your new
custom metric. In this section, you will add code that enables the application to gather built-in HTTP
metrics, but not custom metrics, to provide a tailored view of your web traffic each time a 404 status code
occurs on the specified devices.

1. In the Trigger Configure window, click the Editor tab.
2. Add the following trigger code, highlighted in green, to the existing script:

if (HTTP.statusCode === 404){
 debug (HTTP.uri);
 var app = Application("File Not Found");
 app.metricAddDetailCount(
 "404UriAndReferrer",
 "404:" + HTTP.uri + " | REFERRER:" + HTTP.referer,
 1);
 app.commit();
}

3. Click Save and Close.

View the application and metric pages
The new “File Not Found” application is created the first time the trigger runs and the conditions specified
by the trigger script are met. After you commit the application, it might take several minutes before the
trigger runs and data is available in the application.

The committed application adds built-in metric data relevant to the conditions defined by your trigger each
time the trigger runs. In this walkthrough, built-in HTTP metrics are added to the application each time an
HTTP response results in a 404 status code on the selected devices

The application displays the collected data on one or more protocol pages. Protocol pages are automatically
created depending on the protocol objects included in your trigger. In this walkthrough, because the trigger
runs on HTTP responses, the “File Not Found” application contains a protocol page called Web that displays
built-in HTTP metrics. If you create a trigger configured to run on SSL events, the application displays a
page of built-in SSL metrics, and a trigger that runs on Flow events displays a page of built-in L4 metrics.

1. Click Assets from the top menu.
2. In the left pane, click Applications, and then select the File Not Found application.
3. In the left pane, click HTTP to view the built-in HTTP metrics collected in the application.

The Web page should look similar to the following figure:

Build a trigger to collect custom metrics for HTTP 404 errors 7

Check the trigger performance
Triggers are a powerful tool that can provide detailed insight to your environment; however, triggers
consume resources and affect system performance. In this section, you will check the performance impact
of the trigger and learn about small changes you can make to improve performance.

The trigger performance graph provides the number of cycles the trigger has consumed within the specified
time interval. You can hover over a data point to display details about trigger performance at a single point
in time.

In the Edit Trigger pane, view the Capture Trigger Load chart. chart looks similar to the following figure:

Tip: The System Health page in the System Settings provides additional trigger performance charts
that enables you to monitor the cumulative effect of all of your triggers on the system. See the
System Health dashboard topic.

Try making the following changes, and then check the performance graph to view any changes:

https://docs.extrahop.com/9.2/system-health-overview

Build a trigger to collect custom metrics for HTTP 404 errors 8

• Comment out the debug statement. You have verified that the trigger works and is collecting the
custom and built-in metrics you want; you no longer need the debug output.

• Reassign the trigger to specific devices instead of all HTTP servers in the device group.

For additional trigger optimization tips and tricks, see the ExtraHop Trigger API Reference and the
following Trigger Optimization 101 blog posts in the ExtraHop Community Forums :

• Trigger Optimization 101: Accessing Metrics
• Trigger Optimization 101: Return Quickly
• Trigger Optimization 101: Exception Handling
• Trigger Optimization 101: Return or Exit()?

https://docs.extrahop.com/9.2/extrahop-trigger-api/
https://forums.extrahop.com/
https://forums.extrahop.com/t/trigger-optimization-101-accessing-metrics-extrahop/800
https://forums.extrahop.com/t/trigger-optimization-101-return-quickly-extrahop/749
https://forums.extrahop.com/t/trigger-optimization-101-exception-handling-extrahop/735
https://forums.extrahop.com/t/trigger-optimization-101-return-or-exit-extrahop/767

	Build a trigger to collect custom metrics for HTTP 404 errors
	Prerequisites
	Configure the trigger
	Write a debug statement
	Assign the trigger to devices
	View debug output
	Create a custom metric
	View the custom metric in a chart
	Gather built-in metrics in the application
	View the application and metric pages
	Check the trigger performance

