

Deploy the ExtraHop Discover Appliance with Hyper-V

Published: 2022-03-23

The following procedures explain how to deploy the ExtraHop Discover EDA 1000v and EDA 2000v virtual appliance on the Microsoft Hyper-V platform. You must have experience administering your hypervisor product to complete these procedures.

Virtual machine requirements

Your hypervisor must be able to support the following specifications for the virtual Discover appliance.

- Hyper-V on Windows Server 2012 (or later) capable of hosting the Discover virtual appliance
- Hyper-V Manager to manage the virtual machine
- (Optional) If you want to enable packet captures, configure an additional storage disk during deployment. Refer to your vendor documentation to add a disk.
- The following table provides the server hardware requirements for each Discover appliance model:

Appliance	CPU	RAM	Disk
EDA 1000v	2 processing cores with hyper-threading support, VT-x or AMD- V technology, and 64-bit architecture. Supplemental Streaming SIMD Extensions 3 (SSSE3) support	4 GB	46 GB or higher disk (thick-provisioned)
			250 GB or smaller disk for packet captures (thick-provisioned)
	If you want to enable SSL decryption, 3 CPUs are required. For more information, see Add a CPU Core to the EDA 1000v with Hyper-V .		
EDA 2000v	6 CPUs with hyper- threading support, VT- x or AMD-V technology, and 64-bit architecture. Supplemental Streaming SIMD Extensions 3 (SSSE3) support.	6 GB	255 GB or higher disk (thick-provisioned)
			250 GB or smaller disk for packet captures (thick-provisioned)

To ensure proper functionality of the virtual appliance:

- Do not change the default disk size on initial installation. Keeping the default disk size ensures correct lookback for ExtraHop metrics and proper system functionality. If your configuration requires a different disk size, contact your ExtraHop representative before changing.
- Do not migrate the VM. Although it is possible to migrate when the datastore is on a remote SAN, ExtraHop does not recommend this configuration.
 - Important: If you want to deploy more than one ExtraHop virtual appliance, create the new instance with the original deployment package or clone an existing instance that has never been started.

Network requirements

You can monitor intra-VM or external traffic.

- Intra-VM: One 1-Gbps Ethernet network port is required (for management). The management port must be accessible on port 443.
- External: Two 1-Gbps Ethernet network ports are required. One for the physical port mirror and one for management. The physical port mirror interface must be connected to the port mirror of the switch. While it is possible to configure a 10-Gbps Ethernet network port for the port mirror interface, it is not recommended as the virtual appliance cannot process more than 1 Gbps of traffic.
 - Note: All of the virtual NICs are configured in trunk mode by default. If you need to assign a specific VLAN to your management interface, you must modify the interface through PowerShell to change the management interface to access mode.
 - Important: If your deployment includes a Command appliance or Reveal(x) 360, the following workflow ensures the best performance for initial device synchronization. First, connect all sensors to the Command appliance or Reveal(x) 360, then configure network traffic forwarding to the sensors.

For registration purposes, the virtual Discover appliance requires outbound DNS connectivity on UDP port 53 unless managed by the ExtraHop Command appliance (ECA).

Install the files for Hyper-V

Before you begin

If you have not already done so, download the ExtraHop Discover firmware file for Hyper-V from the ExtraHop Customer Portal I and extract the contents from the .zip file to your Windows Server machine.

- On your Windows Server machine, go to the **Start** menu and open the Hyper-V Manager.
- In the right pane of the Hyper-V Manager, click New and select Import Virtual Machine....
- 3. If the Before You Begin screen appears, click **Next**. Otherwise, continue to the next step.
- 4. Browse to the folder with the extracted files and click **Next**.
- 5. Select the virtual machine to import and click **Next**.
- 6. Select Copy the virtual machine and click Next.
- 7. On Choose Folders for Virtual Machine Files, select the location to store the configuration of the VM and click **Next**.
- 8. On Choose Storage Folders to Store Virtual Hard Disks, select a location to store the virtual hard disks and click Next.
- 9. On the summary screen review your choices and then click Finish.
- 10. Wait several minutes for the files to copy.
- 11. In the Virtual Machines list, right-click the virtual machine and select **Start**.
- 12. Right-click the virtual machine again and select **Connect**.
- 13. Click the green start button at the top of the screen and wait for the login prompt.

- 14. At the login prompt, type shell and then press ENTER.
- 15. At the password prompt, type default, and then press ENTER.
- 16. Run the show ipaddr command to display the IP address and netmask of the Discover appliance. You need the IP address to apply the ExtraHop license in the next procedure.

Note: If your network does not support DHCP, see Configure a Static IP Address to set a static IP address.

Configure a static IP address through the CLI

The ExtraHop system is delivered with DHCP enabled. If your network does not support DHCP, no IP address is acquired, and you must configure a static address manually.

- Important: For deployments that include a Discover appliance that is connected to a Command appliance, we strongly recommend configuring a unique hostname . If the IP address on the sensor is changed, the Command appliance can re-establish connection easily to the sensor by hostname.
- 1. Access the CLI through an SSH connection, by connecting a USB keyboard and SVGA monitor to the appliance, or through an RS-232 serial cable and a terminal emulator program. The terminal emulator must be set to 115200 bps with 8 data bits, no parity, 1 stop bit (8N1), and hardware flow control should be disabled.
- 2. At the login prompt, type shell and then press ENTER.
- 3. At the password prompt, type default, and then press ENTER.
- 4. To configure the static IP address, run the following commands:
 - Enable privileged commands:

enable

- b) At the password prompt, type default, and then press ENTER.
- c) Enter configuration mode:

configure

Enter the interface configuration mode:

interface

e) Run the ip command and specify the IP address and DNS settings in the following format: ip ipaddr <ip address> <netmask> <qateway> <dns server> For example:

```
ip ipaddr 10.10.2.14 255.255.0.0 10.10.1.253 10.10.1.254
```

Leave the interface configuration section:

exit

Save the running config file:

running_config save

h) Type y and then press ENTER.

Configure the Discover appliance

After you configure an IP address for the Discover appliance, open a web browser and navigate to the ExtraHop system through the configured IP address. Accept the license agreement and then log in. The default login name is setup and the password is default. Follow the prompts to enter the product key, change the default setup and shell user account passwords, connect to ExtraHop Cloud Services, and connect to Reveal(x) 360 or a Command appliance.

After the system is licensed, and you have verified that traffic is detected, complete the recommended procedures in the post-deployment checklist ...

Mirror Wire Data

This section includes procedures for mirroring data to your ExtraHop virtual appliance.

Mirroring internal and external traffic

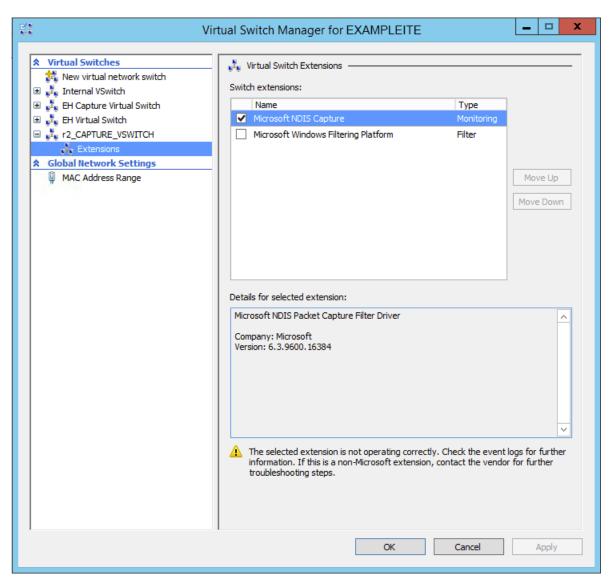
The ExtraHop virtual appliance can be configured to monitor network traffic in the following network configuration examples. Each example requires a modification to the network configuration of its hypervisor host and specifies Network Adapter 1 as the management interface.

Note: Monitoring external network-mirrored traffic requires an external NIC and an associated virtual switch.

Monitoring intra-VM traffic

The Discover appliance can be configured to monitor network traffic of another VM on the same host by choosing Port Mirroring mode in the Hyper-V Manager. An ExtraHop virtual machine running in port mirroring mode can only monitor another virtual machine running on the same virtual switch.

Enable port mirroring mode in the Hyper-V manager


- 1. Right-click the ExtraHop Discover VM and select **Settings**.
- Expand Network Adapter and click Advanced Features.
- In the Port mirroring section, click the Mirroring mode drop-down list and select Source.
- 4. Make note of the source network and ensure the capture interface on the ExtraHop VM is on the same network.
- 5. Click Apply.
- 6. Click OK.
- 7. Repeat these steps for all the VMs you want to monitor, excluding the first VM you created in this procedure.

Monitoring external mirrored traffic to the VM

This scenario requires a second physical network interface and the creation of a second vSwitch associated with that NIC. This NIC then connects to a mirror, tap, or aggregator that copies traffic from a switch. This setup is useful for monitoring the intranet of an office.

- Right-click the ExtraHop Discover VM and select Settings.
- Expand Network Adapter and click Advanced Features.
- 3. In the Port mirroring section, click the Mirroring mode drop-down list and select Destination.
- Click Apply.
- 5. Click OK.
- 6. Expand the virtual switch associated with the external data feed and enable the Microsoft NDIS **Capture** switch. You can ignore the warning that the selected extension is not operating correctly.

- 7. Click **Apply**, and then click **OK**.
- Start Windows PowerShell with administrator privileges.
- 9. Configure the external port of the virtual switch by running the following commands:
 - Store the FeatureName parameter in a variable:

```
$portFeature=Get-VMSystemSwitchExtensionPortFeature -FeatureName
 "Ethernet Switch Port Security Settings"
```

b) Change the monitor mode of the virtual switch to Source:

```
$portFeature.SettingData.MonitorMode = 2
```

c) Add an external port to the virtual switch that includes the FeatureName parameter specified in step 9a:

```
add-VMSwitchExtensionPortFeature -ExternalPort -SwitchName
 <name_of_switch> -VMSwitchExtensionFeature $portFeature
```

Where < name_of_switch> is the name of the virtual switch.

10. Optional: To receive mirrored traffic from multiple VLANs, set the VM NIC to trunk mode and specify a list of allowed VLAN IDs by running the following command:

```
Set-VMNetworkAdapterVlan -VMName <destination vm> -Trunk -
AllowedVlanIdList <id list> -NativeVlanId <vlan id>
```

Where < destination vm > is the name of the Discover VM, < id list > is the list of allowed VLAN IDs, and <vlan id> is the ID of the default VLAN.

For example:

```
Set-VMNetworkAdapterVlan -VMName EDA1000v -Trunk -AllowedVlanIdList 1-100
 -NativeVlanId 10
```

Packet Forwarder

A packet forwarder forwards traffic from any host to ExtraHop. A packet forwarder is conceptually similar to a physical network tap, but implemented in software. In these topics and the industry, this software is alternately referred to as a software tap, or sometimes RPCAP, which stands for Remote Packet Capture.

To implement the packet forwarder, ensure the following:

- You have administrative access to servers you want to monitor.
- You are running a 64-bit Linux or Windows OS (Windows Server 2008 R2 or 2012).

To ensure proper functionality of the ExtraHop virtual appliance:

- Ensure RPCAP is enabled on the ExtraHop virtual appliance. See the Configuring additional RPCAP settings section for optional settings.
- Install the packet forwarder on the servers sending traffic.
- Analyze traffic in the ExtraHop system.

Install the packet forwarder on a Linux server

You must install the packet forwarder software on each server to be monitored in order to forward packets to the ExtraHop system.

page.

Download and install on Debian-based systems

To download and install the packet forwarder on Debian-based systems:

- 2. Install the software on the server by running the following command:

```
sudo dpkg -i rpcapd_<extrahop_firmware_version>_amd64.deb
```

- 3. At the prompt, enter the ExtraHop IP address, confirm the default connection to port 2003, and press ENTER.
- 4. Optional: Verify the ExtraHop system is receiving traffic by running the following commands:

```
sudo dpkg --get-selections | grep rpcapd
```

```
sudo service rpcapd status
```

5. Optional: To change the ExtraHop IP address, port number, or arguments to the service, run the following command.

```
sudo dpkg-reconfigure rpcapd
```

Download and install on RPM-based systems

- 2. Install the software on the server by running the following command:

```
sudo rpm -i rpcapd-<extrahop firmware version>.x86 64.rpm
```

3. Open and edit the rpcapd.ini file in a text editor by running one of the following commands:

```
vim /opt/extrahop/etc/rpcapd.ini
nano /opt/extrahop/etc/rpcapd.ini
```

Example output:

```
#ActiveClient = <TARGETIP>, <TARGETPORT>
NullAuthPermit = YES
```

Replace <TARGETIP> with the IP address of the ExtraHop system, and <TARGETPORT> with 2003. In addition, uncomment the line by deleting the number sign (#) at the beginning of the line.

For example:

```
ActiveClient = 10.10.10.10,2003
NullAuthPermit = YES
```

4. Start sending traffic to the ExtraHop system by running the following command:

```
sudo /etc/init.d/rpcapd start
```

5. Optional: Verify the ExtraHop system is receiving traffic by running the following command:

```
sudo service rpcapd status
```

Download and install on other Linux systems

- 2. Install the software on the server by running the following commands:
 - a) Extract the packet forwarder files from the archive file:

```
tar xf rpcapd-<extrahop_firmware_version>.tar.gz
```

b) Change to the rpcapd directory:

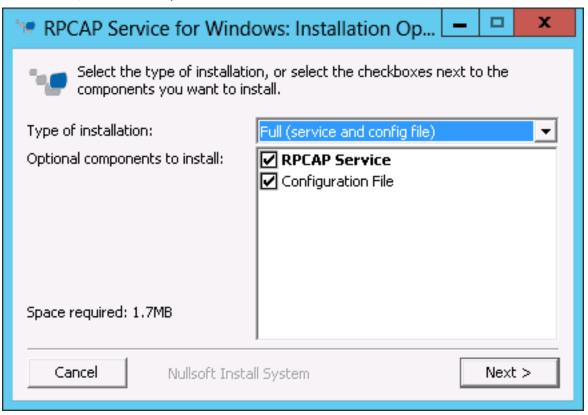
Run the installation script:

cd rpcapd

```
sudo ./install.sh <extrahop_ip> 2003
```

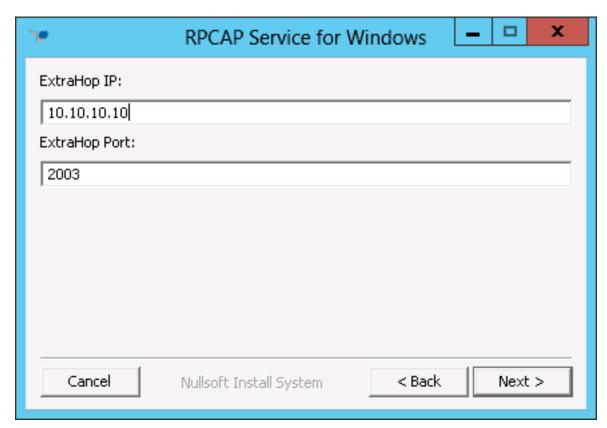
Optional: Verify the ExtraHop system is receiving traffic by running the following command:

```
sudo /etc/init.d/rpcapd status
```

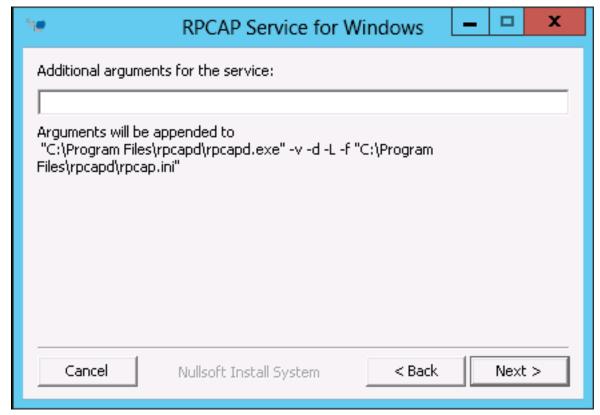

To run the software on servers with multiple interfaces, See Monitoring multiple interfaces on a Linux server.

Install the packet forwarder on a Windows server

You must install the packet forwarder software on each server to be monitored in order to forward packets to the ExtraHop system.

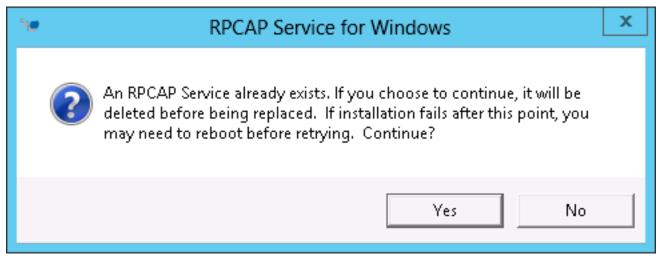


- Download the RPCAP Service for Windows installer file from the ExtraHop Downloads and Resources ☑ web page.
- 2. Double-click the file to start the installer.
- In the wizard, select the components to install.



Complete the ExtraHop IP and ExtraHop Port fields and click Next. The default port is 2003.




Optional: Enter additional arguments in the text box and click Next.

6. Browse to and select the destination folder to install RPCAP Service.

7. If RPCAP Service was previously installed, click Yes to delete the previous service.

8. When the installation is complete, click **Close**.

Monitoring multiple interfaces on a Linux server

For servers with multiple interfaces, you can configure the packet forwarder to forward packets from a particular interface or from multiple interfaces by editing its configuration file on the server.

To edit the configuration file, complete the following steps.

1. After installing the packet forwarder, open the configuration file, /opt/extrahop/etc/ rpcapd.ini.

The configuration file contains this text or similar:

```
ActiveClient = 10.0.0.100,2003
```

```
NullAuthPermit = YES
```

2. Modify the existing ActiveClient line and create an ActiveClient line for each additional interface to be monitored. Specify each interface by its interface name or IP address.

```
ActiveClient = <extrahop_ip>, <extrahop_port>, ifname=<interface_name>
```

or

```
ActiveClient = <extrahop_ip>, <extrahop_port>, ifaddr=<interface_address>
```

Where <interface name > is the name of the interface from which you want to forward packets, and <interface address> is the IP address of the interface from which the packets are forwarded. The <interface address> variable can be either the IP address itself, such as 10.10.1.100, or a CIDR specification (network IP address/subnet prefix length) that contains the IP address, such as 10.10.1.0/24.

For every ActiveClient line, the packet forwarder independently forwards packets from the interface specified in the line.

The following is an example of the configuration file specifying two interfaces by the interface name:

```
ActiveClient = 10.10.6.45, 2003, ifname=eth0
ActiveClient = 10.10.6.45, 2003, ifname=eth1
NullAuthPermit = YES
```

The following is an example of the configuration file specifying two interfaces by the interface IP address:

```
ActiveClient = 10.10.6.45, 2003, ifaddr=10.10.1.100
ActiveClient = 10.10.6.45, 2003, ifaddr=10.10.2.100
NullAuthPermit = YES
```

The following is an example of the configuration file specifying two interfaces using CIDR specifications that contain the interface IP address:

```
ActiveClient = 10.10.6.45, 2003, ifaddr=10.10.1.0/24
ActiveClient = 10.10.6.45, 2003, ifaddr=10.10.2.0/24
NullAuthPermit = YES
```

- 3. Save the configuration file. Make sure to save the file in ASCII format to prevent errors.
- Restart the packet forwarder by running the command:

```
sudo /etc/init.d/rpcapd restart
```


Note: To reinstall the packet forwarder after changing the configuration file, run the installation command and replace <extrahop_ip> and <extrahop_port> with the -k flag in order to preserve the modified configuration file. For example:

```
sudo sh ./install-rpcapd.sh -k
```

Monitoring multiple interfaces on a Windows server

For servers with multiple interfaces, you can configure the packet forwarder to forward packets from a particular interface or from multiple interfaces by editing its configuration file on the server.

To edit the configuration file, complete the following steps.

1. After installing the packet forwarder on the server, open the configuration file: C:\Program Files \rpcapd\rpcapd.ini

The configuration file contains this text or similar:

```
ActiveClient = 10.0.0.100,2003
NullAuthPermit = YES
```

2. Modify the existing ActiveClient line and create an ActiveClient line for each additional interface to be monitored. Specify each interface by its interface name or IP address.

```
ActiveClient = <extrahop_ip>, <extrahop_port>, ifname=<interface_address>
```

Where <interface_address> is the IP address of the interface from which the packets are forwarded and <interface address> can be either the IP address itself, such as 10.10.1.100, or a CIDR specification (network IP address/subnet prefix length) that contains the IP address, such as 10.10.1.0/24.

or

```
ActiveClient = <extrahop ip>, <extrahop port>, ifaddr=<interface name>
```

Where <interface name > is the name of the interface from which the packets are forwarded. The name is formatted as \Device\NPF_{<GUID>}, where <GUID> is the globally unique identifier (GUID) of the interface. For example, if the interface GUID is 2C2FC212-701D-42E6-9EAE-BEE969FEFB3F. the interface name is \Device\NPF {2C2FC212-701D-42E6-9EAE-BEE969FEFB3F}.

The following is an example of the configuration file specifying two interfaces with the interface IP address:

```
ActiveClient = 10.10.6.45, 2003, ifaddr=10.10.1.100
ActiveClient = 10.10.6.45, 2003, ifaddr=10.10.2.100
NullAuthPermit = YES
```

The following is an example of the configuration file specifying two interfaces with CIDR specifications that contain the interface IP address:

```
ActiveClient = 10.10.6.45, 2003, ifaddr=10.10.1.0/24
ActiveClient = 10.10.6.45, 2003, ifaddr=10.10.2.0/24
NullAuthPermit = YES
```

The following is an example of the configuration file specifying two interfaces with the interface name:

```
ActiveClient = 10.10.6.45, 2003, ifname=\Device
\NPF_{2C2FC212-701D-42E6-9EAE-BEE969FEFB3F}
ActiveClient = 10.10.6.45, 2003, ifname=\Device
\NPF_{3C2FC212-701D-42E6-9EAE-BEE969FEFB3F}
NullAuthPermit = YES
```

- 3. Save the configuration (.ini) file. Make sure to save the file in ASCII format to prevent errors.
- 4. Restart the packet forwarder by running the following command:

```
restart-service rpcapd
```

Note: To reinstall the packet forwarder software after changing the configuration file, run the installation command and replace -RpcapIp and -RpcapPort with the -KeepConfig flag to preserve the modified configuration file. For example:

```
.\install-rpcapd.ps1 -MgmtIp <extrahop_ip> -KeepConfig
```

or

```
.\install-rpcapd.ps1 -InputDir . -KeepConfig
```

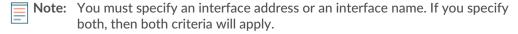
Configuring additional RPCAP settings

By default, the ExtraHop system accepts forwarded packets on port 2003. The servers using the software tap are directed to forward all traffic as denoted by the wildcard (*) in the Interface Address column.

To specify another port, complete the following steps.

- Go to the RPCAP Settings section and click 2003.
- Change and modify the settings on the Add RPCAP Port Definition page.

Port


Specifies the listening port on the ExtraHop system. Each port must be unique for each interface subnet on the same server. Different subnets across servers can be configured for the same port.

Interface Address

Specifies a subnet on the packet-forwarding server. If the server has multiple interfaces that match the interface address, the first interface on the server sends traffic to the ExtraHop system unless the interface name is specified.

Interface Name

Indicates the interface on the packet-forwarding server from which to forward packets.

Filter

Specifies the traffic to forward using Berkeley Packet Filter syntax. For example, TCP port 80 forwards only TCP traffic on port 80, and not TCP port 80 forwards only non-TCP traffic on port 80.

Click Save.

Analyzing wire data from a packet forwarder

To find out how much wire data the ExtraHop system is receiving from the packet forwarder:

- Log in to the ExtraHop system through https://extrahop-hostname-or-IP-address> and click the **System Settings** icon.
- Click System Health to get more information about the forwarded traffic. This page displays a Packets and Throughput graph for each software tap connected to the ExtraHop system.

The RPCAP Packets and Throughput graphs contain four metrics:

Encapsulation

The total number of RPCAP encapsulation packets received by the ExtraHop system.

Tunnel Eligible

Total number of packets eligible to be forwarded to the ExtraHop system.

Tunnel Sent

Total number of RPCAP-tunneled packets forwarded to the ExtraHop system.

Tunnel Received

Total number of RPCAP-tunneled packets received by the ExtraHop system.

The tunnel eligible, tunnel sent, and tunnel received values are equal if the ExtraHop system is receiving and processing all the packets sent by the server. If the values are not equal, consider the following troubleshooting options:

- If Tunnel Sent is less than Tunnel Eligible, the server is not able to forward all of the traffic. This behavior might indicate that packet forwarding requires more processing or outbound bandwidth resources on the server. Consider separating the forwarding process to a separate CPU or allocating a dedicated interface for forwarding traffic.
- If Tunnel Received is less than Tunnel Sent, the ExtraHop system is not receiving all the traffic forwarded by the server. This behavior might be due to network congestion or insufficient resources on the ExtraHop system. If you suspect it is the latter, contact ExtraHop Support.
- 3. After you have verified that the ExtraHop system is receiving traffic, exit the System Health page and view metrics in the ExtraHop Web UI.

Removing the packet forwarder from a Linux server

Run the following commands:

To stop and remove the software from a Debian-based Linux server, run the following commands:

```
sudo service rpcapd stop
sudo dpkg -r rpcapd
sudo dpkg --get-selections | grep rpcapd
```

You can also set the -P flag to completely remove the package from your system.

To stop and remove the software from a RPM-based Linux server, run the following commands:

```
service rpcapd stop
rpm -e rpcapd-<extrahop_firmware_version>.x86_64
```

To stop and remove the software tap from another Linux server, run the following commands:

```
sudo /etc/init.d/rpcapd stop
sudo update-rc.d -f rpcapd remove
sudo rm -rf /opt/extrahop
sudo rm -f /etc/init.d/rpcapd
```

Removing the packet forwader from a Windows server

To remove the software from a Windows server or your Windows desktop:

- 1. Go to the **Start Menu** and select **Control Panel**.
- Select Uninstall a program.
- 3. Select RPCAP Service for Windows.
- 4. In the pop-up dialog box, click **Remove**.
- 5. When the removal is complete, click **Close**.