xtraHop 8.1
ExtraHop REST APl Guide



© 2020 ExtraHop Networks, Inc. All rights reserved.

This manual in whole or in part, may not be reproduced, translated, or reduced to any machine-readable
form without prior written approval from ExtraHop Networks, Inc.

For more documentation, see https://docs.extrahop.com/.
Published: 2020-10-29

ExtraHop Networks

Seattle, WA 98101
877-333-9872 (US)

+44 (0)203 7016850 (EMEA)
+65-31585513 (APAC)
www.extrahop.com


https://docs.extrahop.com/
www.extrahop.com

Contents

Introduction to the ExtraHop REST API

ExtraHop APl requirements

Access and authenticate to the ExtraHop REST

API

Privilege levels

Manage APl key access

Generate an API key

Configure cross-origin resource sharing (CORS)

Set up an SSL certificate

Learn about the REST API Explorer

Open the REST API Explorer
{ 1 information

d values for device search

1 time units

1 time units

Network locality entry
Node

Observations

d values for device groups

ExtraHop 8.1 ExtraHop REST API Guide 3



S mm Berkeley Packet Filter syntax
id « v Hh BPF syntax
""" \ U F syntax

ted time units

Whitelist (Watchlist)

ExtraHop REST API examples

de ExtraHop firmware through the REST AP
ade F traHc \ firmware with cURI

er through the REST APl

ample
through the REST API
ist with the cURL comman

list

d

oh the REST AP

he REST AP

46
47
4 /
47
49

RN OO

o~ O~
1AW

U1 U

S S S ] ] O O O O O
O~ AN OO N0 W ®C

ExtraHop 8.1 ExtraHop REST API Guide 4



Introduction to the ExtraHop REST API

The ExtraHop REST API enables you to automate administration and configuration tasks on your ExtraHop
appliances. You can send requests to the ExtraHop API through a Representational State Transfer (REST)
interface, which is accessed through resource URIs and standard HTTP methods.

When a REST API request is sent over HTTPS to an ExtraHop system, that request is authenticated and
then authorized through an API key. After authentication, the request is submitted to the ExtraHop system
and the operation completes.

Each ExtraHop system provides access to the built-in ExtraHop REST API Explorer, which enables you to
view all of the available system resources, methods, properties, and parameters. The REST API Explorer also
enables you to send API calls directly to your ExtraHop system.

E Note: This guide is intended for an audience that has a basic familiarity with software development
and the ExtraHop system.

ExtraHop API requirements

Before you can begin writing scripts for the ExtraHop REST API or performing operations through the REST
API Explorer, you must meet the following requirements:

e  Your ExtraHop system must be configured to allow API key generation for the type of user you are
(remote or local).

e You must generate a valid API key.

e  You must have a user account on the ExtraHop system with appropriate privileges set for the type of
tasks you want to perform.

ExtraHop 8.1 ExtraHop REST API Guide 5



Access and authenticate to the ExtraHop REST API

Administrators, or users with unlimited privileges, control whether users can generate API keys. For
example, you can prevent remote users from generating keys or you can disable API key generation
entirely. When this functionality is enabled, API keys are generated by users and can be viewed only by the
user who generated the key.

E Note: Administrators set up user accounts and assign privileges, but then users generate their
own API keys. Users can delete API keys for their own account, and users with unlimited
privileges can delete API keys for any user. For more information, see Users and user groups
[En

After you generate an API key, you must append the key to your request headers. The following example
shows a request that retrieves metadata about the firmware running on the ExtraHop appliance:

curl -i -X GET --header "Accept: application/json" \
--header "Authorization: ExtraHop api key=2bc07e55971d4c9a88d0bb4d29ecbb29" \
"https://<host nanme- or - | P- of - your - Ext r aHop- appl i ance>/ api / v1/ ext r ahop"

Privilege levels

User privilege levels determine which ExtraHop Web Ul and ExtraHop Admin Ul tasks the user can perform
through the ExtraHop REST API.

You can view the privilege levels for users through the grant ed_r ol es and ef fecti ve_rol es
properties. The gr ant ed_r ol es property shows you which privilege levels are explicitly granted to the
user. The ef f ecti ve_r ol es property shows you all privilege levels for a user, including those received
outside of the granted role, such as through a user group.

Thegranted_rol es and ef f ecti ve_r ol es properties are returned by the following operations:

e GET /users
e  GET /users/{username}

The granted_rol es and ef f ecti ve_r ol es properties support the following privilege levels. Note that
the type of tasks for each ExtraHop system vary by the available resources listed in the REST API Explorer.

Privilege level Actions allowed

"system": "full" e Enable or disable API key generation for the ExtraHop system.
e  Generate an API key.

e View the last four digits and description for any API key on the
system.

e Delete API keys for any user.

e View and edit cross-origin resource sharing.

e  Transfer ownership of any non-system dashboard to another
user.

e  Perform any Admin Ul task available through the REST API.
e  Perform any Web Ul task available through the REST API.

"write": "full” e Generate your own API key.
e View or delete your own API key.

e Change your own password, but you cannot perform any other
Admin Ul tasks through the REST API.

ExtraHop 8.1 ExtraHop REST API Guide


https://docs.extrahop.com/8.1/users-overview/#users-and-user-groups
https://docs.extrahop.com/8.1/users-overview/#users-and-user-groups

Privilege level

Actions allowed

Perform any Web Ul task available through the REST API.

"write": "limited"

Generate an API key.
View or delete their own API key.

Change your own password, but you cannot perform any other
Admin Ul tasks through the REST API.

Perform all GET operations through the REST API.

Modify the sharing status of dashboards that you are allowed to
edit.

Delete dashboards and activity maps that you own.

Perform metric and record queries.

"write": "personal"

Generate an API key.
View or delete your own API key.

Change your own password, but you cannot perform any other
Admin Ul tasks through the REST API.

Perform all GET operations through the REST API.
Delete dashboards and activity maps that you own.
Perform metric and record queries.

"metrics": "full"

Generate an API key.
View or delete your own API key.

Change your own password, but you cannot perform any other
Admin Ul tasks through the REST API.

View dashboards and activity maps shared with you.
Perform metric and record queries.

"metrics": "restricted"

Generate an API key.
View or delete your own API key.

Change your own password, but you cannot perform any other
Admin Ul tasks through the REST API.

View dashboards and activity maps shared with you.

"packets": "full"

View and download packets from an ExtraHop Discover appliance
through the GET/ packet capt ur es/ {i d} operation.

This is an add-on privilege that can be granted to a user with one of
the following privilege levels:

"write": "full"
"write": "limited"
"write": "personal"
"write": null
"metrics": "full"

"metrics": "restricted"

"packets": "full_with_keys"

View and download packets from an ExtraHop Discover appliance
through the GET/ packet capt ur es/ {i d} operation.

This is an add-on privilege that can be granted to a user with one of
the following privilege levels:

"write": "full"

ExtraHop 8.1 ExtraHop REST API Guide



Privilege level Actions allowed

e "write": "limited"
e "write": "personal”
e "write": null

e "metrics": "full"

e "metrics": "restricted"

"detections": "full” e View detections in the ExtraHop system.

This is an add-on privilege that can be granted to a user with one of
the following privilege levels:

e  "write": "full"

e "write": "limited"
e "write": "personal"
e "write": null

e  "metrics": "full"

e "metrics": "restricted"

" . " .
detections": "none e No access to detections.

This is an add-on privilege that can be granted to a user with one of
the following privilege levels:

o "write": "full"

e "write": "limited"
e "write": "personal”
e "write": null

e "metrics": "full"

e "metrics": "restricted"

Manage API key access

Users with unlimited privileges can configure whether users can generate API keys for the ExtraHop
system. You can allow only local users to generate keys, or you can also disable API key generation entirely.

Users must generate an API key before they can perform operations through the ExtraHop REST API. Keys
can be viewed only by the user who generated the key or system administrators with unlimited privileges.
After a user generates an API key, they must append the key to their request headers.

1. Login to the Administration page on the ExtraHop system through ht t ps: / / <ext r ahop-
host name- or - | P- addr ess>/ adni n.

2. Inthe Access Settings section, click APl Access.

3. Inthe Manage API Access section, select one of the following options:
e Allow all users to generate an API key: Local and remote users can generate API keys.

e  Only local users can generate an APl key: Remote users cannot generate API keys.
e No users can generate an APl key: No API keys can be generated by any user.

4. Click Save Settings.

Generate an API key

You must generate an APl key before you can perform operations through the ExtraHop REST API.
Keys can be viewed only by the user who generated the key or by system administrators with unlimited

ExtraHop 8.1 ExtraHop REST API Guide 8



privileges. After you generate an API key, add the key to your request headers or the ExtraHop REST API
Explorer.

Before you begin
Make sure the ExtraHop system is configured to allow API key generation.

1. In the Access Settings section, click APl Access.
2. Inthe Generate an API Key section, type a description for the new key, and then click Generate.
3. Scroll down to the API Keys section, and copy the API key that matches your description.

You can paste the key into the REST API Explorer or append the key to a request header.

Configure cross-origin resource sharing (CORS)

Cross-origin resource sharing (CORS) allows you to access the ExtraHop REST API across domain-
boundaries and from specified web pages without requiring the request to travel through a proxy server.

You can configure one or more allowed origins or you can allow access to the ExtraHop REST API from any
origin. Only administrative users with unlimited privileges can view and edit CORS settings.

1. In the Access Settings section, click APl Access.

2. Inthe CORS Settings section, specify one of the following access configurations.

e To add a specific URL, type an origin URL in the text box, and then click the plus (+) icon or press
ENTER.

The URL must include a scheme, such as HTTP or HTTPS, and the exact domain name. You cannot
append a path; however, you can provide a port number.

e To allow access from any URL, select the Allow API requests from any Origin checkbox.

g Note: Allowing REST API access from any origin is less secure than providing a list of
explicit origins.
3. Click Save Settings and then click Done.

Set up an SSL certificate

Before making requests to an ExtraHop system with a self-signed certificate, you must set up an SSL
certificate for each user who will access the ExtraHop system from a particular computer.

In each of the following examples, replace {HOST} with the hostname of your ExtraHop system.

E Note: The SSL certificate applies only to the user performing the command. Each user must run
the command with their login credentials to set up the SSL certificate.

Set up SSL through Windows PowerShell
| nvoke- WebRequest "http://{HOST}/public.cer" -QutFile ($env: USERPROFI LE +

"\'ex.cer"); Inport-Certificate ($env: USERPROFI LE + "\ex.cer")
-Cert StorelLocati on Cert:\Current User\ Root

Set up SSL through OS X

curl -O http://{HCST}/ public.cer; security add-trusted-cert -r trustRoot -k
~/ Li br ary/ Keychai ns/ | ogi n. keychai n public. cer

ExtraHop 8.1 ExtraHop REST API Guide



Learn about the REST API Explorer

The REST API Explorer is a web-based tool that enables you to view detailed information about the
ExtraHop REST API resources, methods, parameters, properties, and error codes. Code samples are
available in Python, cURL, and Ruby for each resource. You also can perform operations directly through
the tool.

Open the REST API Explorer
You can open the REST API Explorer from the ExtraHop Admin Ul or through the following URL:

htt ps:// <extrahop- host name- or - i p- addr ess>/ api / v1/ expl or e/

1. Login to the Administration page on the ExtraHop system through ht t ps: / / <ext r ahop-
host name- or - | P- addr ess>/ adni n.

2. From the Access Setting section, click APl Access.
3.  Onthe API Access page, click REST API Explorer.
The REST API Explorer opens in your browser.

View operation information

From the REST API Explorer, you can click any operation to view configuration information for the
resource.

The following table provides information about the sections available for resources in the REST API
Explorer. Section availability varies by HTTP method. Not all methods have all of the sections listed in the

table.
Section Description
Body Parameters Provides all of the fields for the request body and
supported values for each field.
Parameters Provides information about the available query
parameters.
Responses Provides information about the possible HTTP

status codes for the resource. If you click Send
Request, this section also includes the response
from the server and the cURL, Python, and Ruby
syntax required to send the specified request.

Identify objects on the ExtraHop system

Objects on the ExtraHop system can be identified by any unique value, such as the IP address, MAC
address, name, or system ID. However, to perform API operations on a specific object, you must locate the
object ID. You can easily locate the object ID through the following methods in the REST API Explorer.

e The object ID is provided in the headers returned from a POST request. For example, if you send a
POST request to create a page, the response headers display a location URL.

ExtraHop 8.1 ExtraHop REST API Guide 10



The following request returned the location for the newly created page as / api / v1/ pages/ 221 and
the ID for the page as 221.

{
"date": "Wed, 25 Nov 2015 17:39:06 GVI",
"via": "1.1 | ocal host",
"server": "Apache",
"content-type": "text/plain; charset=utf-8",
"l ocation": "/api/vl/ pages/ 221",
"cache-control": "private, max-age=0",
"connection": "Keep-Alive",
"keep-alive": "tineout=45 nmax=89",
"content-length": "O"

}

e The object ID is provided for all objects returned from a GET request. For example, if you perform a
GET request on all devices, the response body contains information for each device, including the ID.

The following response body displays an entry for a single device, with an ID of 10212:

"mod_tine": 1448474346504,
"node_id": null

"id": 10212,

"extrahop_id": "test0001"
"description": null
"user _nmod tinme": 1448474253809,
“di scover _time": 1448474250000,
"vl ani d": O,

"parent id": 9352,

"macaddr": "00: 05: G3: FF: FC: 28"
"vendor": "Cisco",

"is 13": true,

"i paddr4": "10.10.10.5",

"i paddr6": null

"devi ce_cl ass": "node",
"default_name": "Ciscob5",
"custom nane": null,
"“cdp_nane": "",

"dhcp_nane": ""

"net bi os_nane": "",
"dns_nane": "",

"custom type": "",

"anal ysis_ level": 1

H

e The object ID is provided in the URL for most objects. For example, in the ExtraHop Web U, click on
Assets, and then Devices. Select any device and view the URL. In the following example, the URL for
the device page shows Oid=10180.

https://10.10. 10. 205/ ext r ahop/ #/ Devi ces?det ai | s=t rue&devi ce
O d=10180&f r om=6&i nt erval _t ype=HR&unNt i | =0&vi ew=l 2st at s

To perform specific requests for that device, add 10180 to the id field in the REST API Explorer or to
the body parameter in your request.

The URL for dashboards displays a short_code, which appears after /Dashboard. When you add the
short_code to the REST API Explorer or to your request, you must prepend a tilde to the short code.

ExtraHop 8.1 ExtraHop REST API Guide 11



In the following example, kmC9Y is the short_code. To perform requests for this dashboard, add
~knC9Y as the value for the short_code field.

https://10. 10. 10. 205/ ext r ahop/ #/ Dashboar d/ kmC9Y/ ?f r om=6&i nt er val _
t ype=HR&unt i | =0

You can also find the short_code and dashboard ID in the Dashboard Properties for any dashboard,
which can be accessed from the command menu i. Some API operations, such as DELETE, require the

dashboard ID.

ExtraHop 8.1 ExtraHop REST API Guide 12



ExtraHop API resources

You can perform operations on the following resources through the ExtraHop REST API. You also can view
more detailed information about these resources, such as available HTTP methods, query parameters, and
object properties in the REST API Explorer.

Activity group
Activity groups classify devices automatically based on their protocol traffic.

You can retrieve IDs for all activity groups and then perform additional operations on a group that is
associated with a single ID. For example, activity group IDs can be added to metric queries to retrieve

metrics simultaneously for a group of devices. For more information, see Protocols & and the Protocol
Metrics Reference 2.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /activitygroups Retrieve all activity groups from the ExtraHop
system.

GET /activitygroups/{id}/dashboards Retrieve all dashboards related to a specific activity
group.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Activity Map

An activity map is a dynamic visual representation of the L4-L7 protocol activity between devices in your
network. Create a 2D or 3D layout of device connections in real-time to learn about the traffic flow and
relationships between devices.

Here are some important considerations about activity maps:

e You can only create activity maps for devices in Standard Analysis and Advanced Analysis. Discovery
Mode devices are not included in activity maps. For more information, see Analysis levels .

e If you create an activity map for a device, activity group, or device group with no protocol activity in
the selected time interval, the map appears without any data. Change the time interval or your origin
selection and try again.

e You can create an activity map in a Command appliance to view device connections across all of your

Discover appliances. However, connected Discover appliances must be upgraded to firmware version
7.0 or later.

To learn about configuring and navigating activity maps, see Activity maps 2.

The following table displays all of the operations you can perform on this resource:

Operation Description
GET /activitymaps Retrieve all activity maps.
POST /activitymaps Create a new activity map.

ExtraHop 8.1 ExtraHop REST API Guide

13


https://docs.extrahop.com/8.1/assets-overview/#protocols
https://docs.extrahop.com/8.1/metrics-reference
https://docs.extrahop.com/8.1/metrics-reference
https://docs.extrahop.com/8.1/analysis_priorities/#compare-analysis-levels
https://docs.extrahop.com/8.1/activity-maps

Operation

Description

POST /activitymaps/query

Perform a network topology query, which returns
activity map data in flat file content.

DELETE /activitymaps/{id}

Delete a specific activity map.

GET /activitymaps/{id}

Retrieve a specific activity map.

PATCH /activitymaps/{id}

Update a specific activity map.

POST /activitymaps/{id}/query

Perform a topology query for a specific activity
map, which returns activity map data in flat file
content.

GET /activitymaps/{id}/sharing

Retrieve the users and their sharing permissions for
a specific activity map.

PATCH /activitymaps/{id}/sharing

Update the users and their sharing permissions for a
specific activity map.

PUT /activitymaps/{id}/sharing

Replace the users and their sharing permissions for
a specific activity map.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Alert

Alerts are system notifications that are generated upon specified alert criteria. Default alerts are available in

the system, or you can create a custom alert.

Detections and threshold alerts can be set to alert you if a metric crosses the value defined in the alert
configuration. Trend alerts cannot be configured through the REST API. For more information, see Alerts .

E Note: Machine learning detections require a connection to ExtraHop Cloud Services .

The following table displays all of the operations you can perform this resource:

Operation Description

GET /alerts Retrieve all alerts.

POST /alerts Create a new alert with specified values.
DELETE /alerts{id} Delete a specific alert.

GET /alerts{id} Retrieve a specific alert.

PATCH /alerts{id}

Apply updates to a specific alert.

GET /alerts{id}/applications

Retrieve all applications that have a specific alert
assigned.

POST /alerts{id}/applications

Assign and unassign a specific alert to applications.

DELETE /alerts{id}/applications/{child-id}

Unassign an application from a specific alert.

POST /alerts{id}/applications/{child-id}

Assign an application to a specific alert.

GET /alerts/{id}/devicegroups

Retrieve all device groups that have a specific alert
assigned.

ExtraHop 8.1 ExtraHop REST API Guide 14


https://docs.extrahop.com/8.1/alerts
https://docs.extrahop.com/8.1/detections-connect/#connect-to-extrahop-cloud-services

Operation

Description

POST /alerts/{id}/devicegroups

Assign and unassign a specific alert to device
groups.

DELETE /alerts/{id}/devicegroups/{child-id}

Unassign a device group from a specific alert.

POST /alerts/{id}/devicegroups/{child-id}

Assign a device group to a specific alert.

GET /alerts/{id}/devices

Retrieve all devices that have a specific alert
assigned.

POST /alerts/{id}/devices

Assign and unassign a specific alert to devices.

DELETE /alerts/{id}/devices/{child-id}

Unassign a device from a specific alert.

POST /alerts/{id}/devices/{child-id}

Assign a device to a specific alert.

GET /alerts/{id}/emailgroups

Retrieve all email groups that have a specific alert
assigned.

POST /alerts/{id}/emailgroups

Assign and unassign a specific alert to email groups.

DELETE /alerts/{id}/emailgroups/{child-id}

Unassign a email group from a specific alert.

POST /alerts/{id}/emailgroups/{child-id}

Assign a email group to a specific alert.

GET /alerts/{id}/exclusionintervals

Retrieve all exclustion intervals that have a specific
alert assigned.

POST /alerts/{id}/exclusionintervals

Assign and unassign a specific alert to exclustion
intervals.

DELETE /alerts/{id}/exclusionintervals/{child-id}

Unassign an exclusion interval from a specific alert.

POST /alerts/{id}/exclusionintervals/{child-id}

Assign an exclusion interval to a specific alert.

GET /alerts/{id}/networks

Retrieve all networks that have a specific alert
assigned.

POST /alerts/{id}/networks

Assign and unassign a specific alert to networks.

DELETE /alerts/{id}/networks/{child-id}

Unassign a network from a specific alert.

POST /alerts/{id}/networks/{child-id}

Assign a network to a specific alert.

GET /alerts/{id}/stats

Retrieve all additional statistics for a specific alert.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Alert severity levels

The severity level you specify for an alert is displayed on the Alerts page, email notifications, and SNMP

traps.

The following severity levels are supported. Severity levels 0-2 require immediate attention.

Value Name Description

0 Emergency System functionality is
unavailable.

1 Alert Immediate action is required.

ExtraHop 8.1 ExtraHop REST API Guide 15



Value Name Description

2 Critical Critical conditions are occurring.
3 Error Error conditions are occurring.

4 Warning Warning conditions are occurring.
5 Notice Normal operations are occurring

with significant conditions, such
as a restart.

6 Info Normal operations are occurring
with process updates.

7 Debug Debug-level messages are
available.

Analysis Priority

The ExtraHop system analyzes and classifies traffic for every device it discovers. Your license reserves
capacity for the ExtraHop system to collect metrics for critical assets. This capacity is associated with two
analysis levels: Advanced Analysis and Standard Analysis.

You can specify which devices receive Advanced Analysis and Standard Analysis levels by configuring
analysis priority rules 2. Analysis priorities help inform the ExtraHop system about which devices are
important in your environment. A third analysis level, Discovery Mode, is available for devices that are not
in Advanced or Standard Analysis.

E Note: By default, a Discover appliance manages its own analysis priorities for devices that it
discovers. If the Discover appliance is connected to a Command appliance, you can transfer
priority management to that Command appliance, which can help save time in a large
deployment.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /analysispriority/config/{appliance_id} Retrieve the analysis priority rules for a specific
Discover appliance.

PUT /analysispriority/config/{appliance_id} Replace the analysis priority rules for a specific
Discover appliance.

GET /analysispriority/{appliance_id}/manager Retrieve the appliance that manages analysis
priority rules for a specific Discover appliance.

PATCH /analysispriority/{appliance_id}/manager Update which appliance manages analysis priority
rules for a specific Discover appliance.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

APIKey

An API key enables a user to perform operations through the ExtraHop REST API.

You can generate the initial APl key for the setup user account through the REST API. All other API keys are
generated through the API Access page in the ExtraHop Admin Ul.

ExtraHop 8.1 ExtraHop REST API Guide 16


https://docs.extrahop.com/8.1/analysis_priorities/#prioritizing-devices-and-groups

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /apikeys Retrieve all API keys.

POST /apikeys Create the initial API key for the setup user account.
GET /apikeys/{keyid} Retrieve information about a specific API key.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Appliance

The ExtraHop system consists of a network of connected appliances that perform tasks such as monitoring
traffic, analyzing data, storing data, and identifying detections.

You can retrieve information about ExtraHop appliances connected to the local appliance and establish new
connections to remote ExtraHop appliances.

Note: You can only establish a connection to a remote ExtraHop appliance that is licensed for the
same edition as the local ExtraHop appliance.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /appliances Retrieve all remote ExtraHop appliances connected
to the local appliance.

POST /appliances Establish a new connection to a remote ExtraHop
appliance.
GET /appliances/{id} Retrieve a specific remote ExtraHop appliance

connected to the local appliance.

GET /appliances/{id}/productkey Retrieve the product key of the specified appliance.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Application

Applications are user-defined groups that collect metrics identified through triggers across multiple types of
traffic. The default All Activity application contains all collected metrics.

The following table displays all of the operations you can perform on the application resource:

Operation Description

GET /applications Retrieve all applications that were active within a
specific timeframe.

POST /applications Create a new application.

GET /applications/{id} Retreive a specific application.

PATCH /applications/{id} Update a specific application.

ExtraHop 8.1 ExtraHop REST API Guide 17



Operation

Description

GET /applications/{id}/activity

Retrieve all activity for a specific application.

GET /applications/{id}/alerts

Retrieve all alerts that are assigned to a specific
application.

POST /applications/{id}/alerts

Assign and unassign alerts to a specific application.

DELETE /applications/{id}/alerts/{child-id}

Unassign an alert from a specific application.

POST /applications/{id}/alerts/{child-id}

Assign an alert to a specific application.

GET /applications/{id}/dashboards

Retrieve all dashboards related to a specific
application.

GET /applications/{id}/pages

Retrieve all pages that are assigned to a specific
application.

POST /applications/{id}/pages

Assign and unassign pages to a specific application.

DELETE /applications/{id}/pages/{child-id}

Unassign a page from a specific application.

POST /applications/{id}/pages/{child-id}

Assign a page to a specific application.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Audit log

The audit log displays a record of all recorded system administration and configuration activity, such as
the time of the activity, the user who performed the activity, the operation, operation details, and system

component..

The following table displays all of the operations you can perform on this resource:

Operation

Description

GET /auditlog

Retrieve all audit log messages.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Auth

You can configure secure, single sign-on (SSO) authentication to the Command and Discover appliances
through one or more security assertion markup language (SAML) identity providers.

When a user logs in to an ExtraHop system that is configured as a service provider (SP) for SAML SSO
authentication, the ExtraHop appliance requests authorization from the appropriate identity provider (IdP).
The identity provider authenticates the user’s credentials and then returns the authorization for the user to
the ExtraHop appliance. The user is then able to access the ExtraHop system.

Operation

Description

GET /auth/identityproviders

Retrieve all identity providers.

POST /auth/identityproviders

Add an identity provider for remote authentication.

ExtraHop 8.1 ExtraHop REST API Guide 18



Operation Description

DELETE /auth/identityproviders/{id} Delete a specific identity provider.

GET /auth/identityproviders/{id} Retrieve a specific identity provider.

PATCH /auth/identityproviders/{id} Update an existing identity provider.

GET /auth/identityproviders/{id}/privileges Retrieve the privilege settings for a specific identity
provider.

PATCH /auth/identityproviders/{id}/privileges Update the privilege settings for a specific identity
provider.

GET /auth/samlsp Retrieve SAML security provider (SP) metadata for

this appliance.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Bundle

Bundles are JSON-formatted documents that contain information about selected system configuration,
such as triggers, dashboards, applications, or alerts.

You can create a bundle and then transfer those configurations to another ExtraHop system, or save
the bundle as a backup. Bundles can also be downloaded from ExtraHop Solution Bundles & and applied
through the REST API. For more information, see Bundles .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /bundles Retrieve metadata about all bundles on the
ExtraHop system.

POST /bundles Upload a new bundle to the ExtraHop system.
DELETE /bundles/{id} Delete a specific bundle.

GET /bundles/{id} Retrieve a specific bundle export.

POST /bundles/{id}/apply Apply a saved bundle to the ExtraHop system.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Cloud

This resource enables you to connect your on-premises Discover appliance to Reveal(x) 360 Cloud Control
Plane. For more information about configuring Reveal(x) 360, see Connect to Reveal(x) 360 from self-
managed sensors [,

The following table displays all of the operations you can perform on this resource:

ExtraHop 8.1 ExtraHop REST API Guide 19


https://www.extrahop.com/community/bundles/
https://docs.extrahop.com/8.1/bundles
https://docs.extrahop.com/8.1/configure-ccp
https://docs.extrahop.com/8.1/configure-ccp

Operation Description

POST /cloud/connect Connect the ExtraHop Discover appliance to
Reveal(x) 360 Cloud Control Plane.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Custom device

You can create a custom device by defining a set of rules.

For example, you can create a custom device that has an IP address on a specified VLAN. By default, all IP
addresses outside of the locally-monitored broadcast domains are aggregated behind a router. To identify
devices that are behind that router, you can create a custom device, and then collect metrics from the
device. For more information, see Create custom devices through the REST API.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /customdevices Retrieve all custom devices.

POST /customdevices Create a custom device.

DELETE /customdevices/{id} Delete a specific custom device.

GET /customdevices/{id} Retrieve a specific custom device.

PATCH /customdevices/{id} Update a specific custom device.

GET /customdevices/{id}/criteria Retrieve all criteria fro the specific custom device.
POST /customdevices/{id}/criteria Create a new criterion for a specific custom device.
DELETE /customdevices/{id}/criteria/{child-id} Delete a criterion for a specific custom device.
GET /customdevices/{id}/criteria/{child-id} Retrieve a single custom device criterion.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Customization

The Customization resource enables you to manage backups files on the ExtraHop Discover or Command
appliance. You must have unlimited privileges to perform operations on this resource.

Backup files contain both customizations and systems resources. Customizations are user-defined objects,
such as alerts, dashboards, triggers, and custom metrics. System resources are items such as bundles,

local users and groups, and the appliance SSL certificate. For more information, see Back up and restore a
Discover or Command appliance 2.

The following table displays all of the operations you can perform on this resource:

Operation Description
GET /customizations Retrieve all backup files.
POST /customizations Create a backup file.

ExtraHop 8.1 ExtraHop REST API Guide 20


https://docs.extrahop.com/8.1/eh-admin-ui-guide/#back-up-and-restore-a-discover-or-command-appliance
https://docs.extrahop.com/8.1/eh-admin-ui-guide/#back-up-and-restore-a-discover-or-command-appliance

Operation Description

GET /customizations/status Retrieve status details for the most recent backup
attempt.

DELETE /customizations/{id} Delete a specific backup file.

GET /customizations/{id} Retrieve a specific backup file.

POST /customizations/{id}/apply Restore only customizations from a specific backup
file.

POST /customizations/{id}/download Download a specific backup file.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Dashboards

Dashboards are built-in or customized views of your ExtraHop metrics information. For more information,
see Dashboards .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /dashboards Retrieve all dashboards.

DELETE /dashboards/{id} Delete a specific dashboard.

GET /dashboards/{id} Retrieve a specific dashboard.

PATCH /dashboards/{id} Update ownership of a specific dashboard.

GET /dashboards/{id}/reports Retrieve scheduled reports that contain a specific
dashboard.

@ Important: This operation is only available from
an ExtraHop Command appliance.

GET /dashboards/{id}/sharing Retrieve the users and their sharing permissions for
a specific dashboard.

PATCH /dashboards/{id}/sharing Update the users and their sharing permissions for a
specific dashboard.

PUT /dashboards/{id}/sharing Replace the users and their sharing permissions for
a specific dashboard.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Device

Devices are objects on your network that have been identified and classified by your ExtraHop appliance.
For more information, see Devices 2.

The following table displays all of the operations you can perform on this resource:

ExtraHop 8.1 ExtraHop REST API Guide 21


https://docs.extrahop.com/8.1/dashboards
https://docs.extrahop.com/8.1/devices-overview

Operation

Description

GET /devices

Retrieve all devices that were active within a
specific time period. For more information, see
Extract the device list through the REST API.

Note: A device is considered inactive after
five minutes of not sending or receiving
packets. However, if a device resumes
sending or receiving packets after a period
of inactivity shorter than five days, the
device is considered to have been active
continuously, including during the period of
inactivity.

POST /devices/search

Retrieve all devices that match specific criteria. For
more information, see Search for a device through
the REST API .

Note: A device is considered inactive after
five minutes of not sending or receiving
packets. However, if a device resumes
sending or receiving packets after a period
of inactivity shorter than five days, the
device is considered to have been active
continuously, including during the period of
inactivity.

GET /devices/{id}

Retrieve a specific device.

PATCH /devices/{id}

Update a specific device.

GET /devices/{id}/activity

Retrieve all activity for a device.

GET /devices/{id}/alerts

Retrieve all alerts that are assigned to a specific
device.

POST /devices/{id}/alerts

Assign and unassign a specific device to alerts.

DELETE /devices/{id}/alerts/{child-id}

Unassign an alert from a specific device.

POST /devices/{id}/alerts/{child-id}

Assign an alert to a specific device.

GET /devices/{id}/dashboards

Retrieve all dashboards related to a specific device.

GET /devices/{id}/devicegroups

Retrieve all device groups that are assigned to a
specific device.

POST /devices/{id}/devicegroups

Assign and unassign a specific device to device
groups.

DELETE /devices/{id}/devicegroups/{child-id}

Unassign a device group from a specific device.

POST /devices/{id}/devicegroups/{child-id}

Assign a device group to a specific device.

GET /devices/{id}/ipaddrs

Retrieve all IP addresses that were associated with a
specific device within a given time period.

GET /devices/{id}/software

Retrieve a list of software running on the specified
device.

GET /devices/{id}/tags

Retrieve all tags that are assigned to a specific
device.

ExtraHop 8.1 ExtraHop REST API Guide 22


https://docs.extrahop.com/8.1/rest-search-for-device
https://docs.extrahop.com/8.1/rest-search-for-device

Operation Description

POST /devices/{id}/tags Assign and unassign a specific device to tags.

DELETE /devices/{id}/tags/{child-id} Unassign a tag from a specific device.

POST /devices/{id}/tags/{child-id} Assign a tag to a specific device.

GET /devices/{id}/triggers Retrieve all triggers that are assigned to a specific
device.

POST /devices/{id}/triggers Assign and unassign a specific device to triggers.

DELETE /devices/{id}/triggers/{child-id} Unassign a trigger from a specific device.

POST /devices/{id}/triggers/{child-id} Assign a trigger to a specific device.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Operand values for device search

The POST /devices/search operation enables you to search for devices by criteria specified in filter objects.
Each object should contain a unique value for the oper and field that is valid for the specified f i el d value.

activity

To search by metric activity, specify the f i el d value as acti vi t y and the oper and value as a
metric_category.Youcanfind netri c_cat egory values in the REST API Parameters section of the
Metric Catalog.

REST API Parameters

"metric_category”: "dhop client”,
"object type": "device”,
"metric_specs": [

{

"name": "reg”

The following example returns results for devices that match all metric activity classified for a DHCP client,
such as the number of DHCP requests sent.

"filter": {
"field": "activity",
"operand": "dhcp_client",
"operator": "="

Tip: Programmatically retrieve a list of all metric activity for a device through the GET / devi ces/
{id}/activity operation. The st at _nan®e value matches the netri c_cat egory value in
the et ri c_cat al og, after the final dot.

ExtraHop 8.1 ExtraHop REST API Guide

23



In the following example response, the st at _nane value is ext r ahop. devi ce. dhcp_cl i ent. Remove
the text before the final dot to identify the met ri c_cat al og value of dhcp_cl i ent.

{

"id": 198606,

"fromtime": 1581537120000,

"until _time": 1581542520000,

"nmod_tinme": 1581542533963,

"device_ id": 30096,

"stat _nane": "extrahop. device.dhcp client"
}

di scover _tine

To search by a time range, specify the f i el d value as di scover _ti ne and an oper and value with f rom
and unt i | parameters, where the values are dates, expressed in milliseconds since the epoch.

The following example returns results for all device activity that occurred between 1:00 PM to 3:00 PM on
August 21, 2019.

"filter": {
"field": "discover tine",
"operand":
"from': "1566392400000",
"until": "1566399600000"
li s
"operator": "="
}

di scovery_id

To search by the unique ID for the device, specify the f i el d value as di scovery_i d and the oper and
value as the discovery ID.

"filter":
"field": "discovery id",
"operand”: "cl1l2vf90gpg290000",
"operator": "="
}
}
i paddr
To search by IP address, specify the f i el d value as i paddr and the oper and value as an IP address or
CIDR block.
"filter": {
"field": "ipaddr",
"operand": "192.168.12.0/28",
"operator": "="
}
}

ExtraHop 8.1 ExtraHop REST API Guide 24



node

To search by the unique ID of a Discover appliance, specify the f i el d value as node and the oper and
value as the appliance UUID.

"filter":
"field': "node",
"operand”: "qqvsplfa-zxsk-32l 0-19g1-076vfr42pw3dl”,
"operator": "="
}
}
macaddr

To search by the MAC address of a device, specify the field value as nacaddr and the operand value
as the device MAC address. The following example returns results for devices with a MAC address of
ClL: 1C N2: 0Q PJ: 10 or C1: 1C: N2: 0Q PJ: 11.

"filter": {
"operator": "or",
"rules": [
t,.
"field": "macaddr"”,
"operand”: "Cl:1C N2: 0Q PJ: 10",
"operator": "="
},
t,.
"field": "nacaddr",
"operand”: "Cl:1C N2:0Q PJ: 11",
"operator": "="
}
]
}
}
nane

To search by the device display name, specify the f i el d value as name and the oper and value as the
device name or as a regex string.

"filter": {
"field": "nanme",
"operand”: "VMware B2CEB6",
"operator": "="
}
}
role

To search by the device role, specify the fi el d value as r ol e and the oper and value as the device role.

"filter": {
"field": "role",
"operand": "voi p_phone",
"operator": "="

}

ExtraHop 8.1 ExtraHop REST API Guide 25



sof t war e

To search by the software running on the device, specify the f i el d value as sof t war e and the oper and
value as the ID associated with that software on the ExtraHop system or as a regex string.

"filter": {
"field": "software",
"operand": "w ndows_ 10",
"operator": "="
}
}
Tip: Programmatically retrieve a list of all software IDs associated with a device through the
GET /devi ces/ {i d}/ sof t war e operation.
In the following example response, the i d value for the software is wi ndows_10.
[
{
"software_type": "OS',
"nanme": "W ndows",
"version": "10",
"description": null,
"id": "wi ndows_ 10"
}
]
t ag

To search by a device tag, specify the f i el d value as t ag and the oper and value as the tag name or as a
regex string.

"filter": {
uflel d": "tag",
"operand": "Custom Tag",
"operator": "="

}

}

Tip: Programmatically retrieve a list of all device tags through the GET / devi ces/ {i d}/t ags
operation.

In the following example response, the nane value for the tag is Cust om Tag.

[

“mod_tine": 1521577040934,
"id": 19,
"nane": "Custom Tag"
}
]

ExtraHop 8.1 ExtraHop REST API Guide 26



vlan

To search by the ID of a VLAN, specify the f i el d value as vl an and the oper and value as the ID of the

VLAN.

"filter": {
"“field": "vlan",
"operand”: "0",
"operator": "="

}

}

Search with regular expressions (regex)

For certain f i el d values, the string can be in regex syntax. Specify the oper and value as an object that
has a val ue parameter with the regex syntax you want to match and ani s_r egex parameter that is set to
t r ue. The following example returns results for all DNS names that end with com

"filter": {
"field": "dns_nane",
"operand": {
"val ue": ".*?cont,
"is_regex": true
s
"operator": "="

}

An oper and field with regex syntax is valid for the following f i el d values:

e cdp_name

e custom_name
e dns_name

e dhcp_name

e model

e name

e netbios_name
e software

e tag

e vendor

Supported time units
For most parameters, the default unit for time measurement is milliseconds. However, the following
parameters return or accept alternative time units such as minutes and hours:
e Device
e active_from
e active_until
e Device group

e active_from
e active_until

e  Metrics
e from
e until

ExtraHop 8.1 ExtraHop REST API Guide 27



e Record Log

e from
e until
e context_ttl

The following table displays supported time units:

Time unit Unit suffix
Year y

Month M

Week w

Day d

Hour h

Minute m

Second S
Millisecond ns

To specify a time unit other than milliseconds for a parameter, append the unit suffix to the value. For
example, to request devices active in the last 30 minutes, specify the following parameter value:

GET /api/vl/ devi ces?active_from=-30m

The following example specifies a search for HTTP records created between 1 and 2 hours ago:

"from: "-2h",
"until": "-1h",
"types": ["~http"]

Device group
Device groups can be either static or dynamic.

A static device group is user-defined; you create a device group and then manually identify and assign each
device to that group. A dynamic device group is defined and automatically managed by a set of configured
rules.

For example, you can create a device group and then set a rule to classify all devices within a certain IP
address range to be added to that group automatically. For more information, see Device Groups .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /devicegroups Retrieve all device groups that were active within a
specific time period.

POST /devicegroups Create a new device group.

DELETE /devicegroups/{id} Delete a device group.

GET /devicegroups/{id} Retrieve a specific device group.

ExtraHop 8.1 ExtraHop REST API Guide 28


https://docs.extrahop.com/8.1/assets-overview/#device-groups

Operation

Description

PATCH /devicegroups/{id}

Update a specific device group.

GET /devicegroups/{id}/alerts

Retrieve all alerts that are assigned to a specific
device group.

POST /devicegroups/{id}/alerts

Assign and unassign a specific device group to
alerts.

DELETE /devicegroups/{id}/alerts/{child-id}

Unassign an alert from a specific device group.

POST /devicegroups/{id}/alerts/{child-id}

Assign an alert to a specific device group.

GET /devicegroups/{id}/dashboards

Retrieve all dashboards related to a specific device
group.

GET /devicegroups/{id}/devices

Retrieve all devices in the device group that are
active within a specific time window.

Note: A device is considered inactive after
five minutes of not sending or receiving
packets. However, if a device resumes
sending or receiving packets after a period
of inactivity shorter than five days, the
device is considered to have been active
continuously, including during the period of
inactivity.

POST /devicegroups/{id}/devices

Assign and unassign a devices to a specific static
device group.

DELETE /devicegroups/{id}/devices/{child-id}

Unassign a device from a specific static device
group.

POST /devicegroups/{id}/devices/{child-id}

Assign a device to a specific static device group.

GET /devicegroups/{id}/pages

Retrieve all pages that are assigned to a specific
device group.

POST /devicegroups/{id}/pages

Assign and unassign a specific device to pages
group.

DELETE /devicegroups/{id}/pages/{child-id}

Unassign a page from a specific device group.

POST /devicegroups/{id}/pages/{child-id}

Assign a page to a specific device group.

GET /devicegroups/{id}/triggers

Retrieve all triggers that are assigned to a specific
device group.

POST /devicegroups/{id}/triggers

Assign and unassign a specific device group to
triggers.

DELETE /devicegroups/{id}/triggers/{child-id}

Unassign a trigger from a specific device group.

POST /devicegroups/{id}/triggers/{child-id}

Assign a trigger to a specific device group.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

ExtraHop 8.1 ExtraHop REST API Guide 29



Supported time units

For most parameters, the default unit for time measurement is milliseconds. However, the following
parameters return or accept alternative time units such as minutes and hours:

e Device

e active_from
e active_until
e Device group

e active_from
e active_until

e Metrics
e from
e until

e Record Log

e from
e until
e context_ttl

The following table displays supported time units:

Time unit Unit suffix
Year y

Month M

Week w

Day d

Hour h

Minute m

Second S
Millisecond ns

To specify a time unit other than milliseconds for a parameter, append the unit suffix to the value. For
example, to request devices active in the last 30 minutes, specify the following parameter value:

GET /api/vl/ devi ces?active_fronm=30m

The following example specifies a search for HTTP records created between 1 and 2 hours ago:

"from': "-2h",
"until": "-1h",
"types": ["~http"]

Operand values for device groups

The POST /devicegroups operation enables you to create device groups according to criteria specified in
filter objects. Each object should contain a unique value for the oper and field that is valid for the specified
fiel dvalue.

ExtraHop 8.1 ExtraHop REST API Guide 30



activity

To select devices by metric activity, specify the fi el d value as acti vi ty and the oper and value as a
metric_category.Youcanfind netri c_cat egory values in the REST API Parameters section of the
Metric Catalog.

REST API Parameters

"metric_category”: "dhop client”,
"object type": "device”,

"metric_specs": [

{

"name": "reg”

The following example selects devices with metric activity classified for a DHCP client, such as the number
of DHCP requests sent.

"filter": {
"field": "activity",
"operand": "dhcp_client",
"operator": "="

}

Tip: Programmatically retrieve a list of all metric activity for a device through the GET / devi ces/
{id}/activity operation. The st at _nan®e value matches the netri c_cat egory value in
the et ri c_cat al og, after the final dot.

In the following example response, the st at _nane value is ext r ahop. devi ce. dhcp_cl i ent. Remove
the text before the final dot to identify the net ri c_cat al og value of dhcp_cl i ent.

{
"id": 198606,
"fromtinme": 1581537120000,
"until _tinme": 1581542520000,
"mod_tinme": 1581542533963,
"device_id": 30096,
"stat _nane": "extrahop. device.dhcp_client”

di scover tine

To select devices by a time range, specify the fi el d value as di scover _ti ne and an oper and value with
fromand unt i | parameters, where the values are dates, expressed in milliseconds since the epoch.

The following example selects devices with activity that occurred between 1:00 PM to 3:00 PM on August
21, 2019.

"filter™:
"field": "discover tinme",
"operand":
"from': "1566392400000",
"until": "1566399600000"
} il
"operator": "="

ExtraHop 8.1 ExtraHop REST API Guide 31



di scovery_id

To select devices by unique device ID, specify the f i el d value as di scovery_i d and the oper and value
as the discovery ID.

"filter": {
"field": "discovery id",
"operand": "c12vf90qpg290000"
"operator": "="
}
}
i paddr

To select devices by IP address, specify the fi el d value asi paddr and the oper and value as an IP
address or CIDR block.

"filter": {
"field": "ipaddr",
"operand": "192.168.12.0/28",
"operator": "="
}
}
node

To select devices by the unique ID of a Discover appliance, specify the f i el d value as node and the
oper and value as the appliance UUID.

"filter": {
"field": "node",
"operand": "qqgvspl fa-zxsk-32l 0-19g1-076vfr42pw3l"”
"operator": "="
}
}
macaddr

To select devices by MAC address, specify the field value as nacaddr and the operand value as
the device MAC address. The following example returns results for devices with a MAC address of

Cl: 1C N2: 0Q PJ: 10 0orC1: 1C. N2: 0Q PJ: 11.

"filter": {
"operator": "or",
"rules": [
"field": "macaddr",
"operand": "Cl:1C. N2:0Q PJ: 10",
"operator": "="
15
t,.
"field": "macaddr"”,

ExtraHop 8.1 ExtraHop REST API Guide 32



"operand": "Cl:1C N2:0Q PJ: 11",
"operator": "="

}

]
}
}

nane

To select devices by display name, specify the f i el d value as name and the oper and value as the device
name or as a regex string.

"filter": {
"field": "nane",
"operand": "VMware B2CEB6",
"operator": "="
}
}
role

To select devices by role, specify the fi el d value as r ol e and the oper and value as the device role.

"filter": {
"field": "role",
"operand": "voi p_phone",
"operator": "="
}
}
sof tware

To select devices by the software running on the device, specify the f i el d value as sof t war e and the
oper and value as the ID associated with that software on the ExtraHop system or as a regex string.

"filter": {
"field": "software",
"operand": "w ndows_ 10",
"operator": "="

}

}

Tip: Programmatically retrieve a list of all software IDs associated with a device through the
CET /devices/ {i d}/ sof t war e operation.

In the following example response, the i d value for the software is wi ndows_10.

[

{
"software_type": "OS",
"nane": "W ndows",
"version": "10",
"description": null,
"id": "wi ndows_ 10"

}

]

ExtraHop 8.1 ExtraHop REST API Guide 33



tag

To select devices by tag, specify the fi el d value as t ag and the oper and value as the tag name or as a

regex string.

Tip: Programmatically retrieve a list of all device tags through the GET / devi ces/{i d}/t ags

In the following example response, the nane value for the tag is Cust om Tag.

"filter": {
"field": "tag",
"operand”: "Custom Tag",
"operator": "="
}
}
operation.
[
"mod_tine": 1521577040934,
"id": 19,
"nanme": "Custom Tag"
}
]
vlan

To select devices by the ID of a VLAN, specify the fi el d value as vl an and the oper and value as the ID

of the VLAN.

"filter": {
"field"': "vlan",
"operand": "0",
"operator": "="

}

}

Search with regular expressions (regex)

For certain f i el d values, the string can be in regex syntax. Specify the oper and value as an object that
has a val ue parameter with the regex syntax you want to match and ani s_r egex parameter that is set to
t r ue. The following example selects devices with DNS names that end with com

"filter": {
"field": "dns_nane",
"operand": {
"val ue": ".*?cont,

"is_regex": true

}

perator": "="

}

An oper and field with regex syntax is valid for the following f i el d values:

e cdp_name
e custom_name

ExtraHop 8.1 ExtraHop REST API Guide 34



e dns_name

e dhcp_name

e model

e name

e netbios_name
e software

e tag
e vendor
Detections

The Detections class enables you to retrieve detections that have been identified by your appliance.

The following table displays all of the operations you can perform on this resource:

Operation

Description

GET /detections

Retrieve all detections.

POST /detections/search

Retrieve detections that match the specified search
criteria.

PATCH /detections/tickets

Update a ticket associated with detections.

GET /detections/{id}

Retrieve a specific detection.

PATCH /detections/{id}

Update a detection.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Email group

You can add individual or group email addresses to an email group and assign them to a system alert. When
that alert is triggered, the system sends an email to all of the addresses in the email group.

The following table displays all of the operations you can perform on this resource:

Operation

Description

GET /emailgroups

Retrieve all email groups.

POST /emailgroups

Create a new email group.

DELETE /emailgroups/{id}

Delete a email group by a unique identifier.

GET /emailgroups/{id}

Retrieve a specific email group by a unique
identifier.

PATCH /emailgroups/{id}

Apply updates to a specific email group.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

ExtraHop 8.1 ExtraHop REST API Guide 35



Exclusion intervals

An exclusion interval can be created to set a time period to suppress an alert.

For example, if you do not want to be notified about alerts after hours or on the weekends, an exclusion
interval can create a rule to suppress the alert during that time period. For more information, see Alerts .

The following table displays all of the operations you can perform on this resource:

Operation

Description

GET /exclusionintervals

Retrieve all exclusion intervals.

POST /exclusionintervals

Create a new exclusion interval.

DELETE /exclusionintervals/{id}

Delete a specific exclusion interval.

GET /exclusionintervals/{id}

Retrieve a specific exclusion interval.

PATCH /exclusionintervals/{id}

Apply updates to a specific exclusion interval.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

ExtraHop

This resource provides metadata about the ExtraHop system, such as the firmware version or if the

appliance is a Command appliance.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /extrahop Retrieve metadata about the firmware running on
the ExtraHop system.

GET /extrahop/cluster Retrieve Explore cluster configuration settings.

PATCH /extrahop/cluster

Update Explore cluster configuration settings.

PUT /extrahop/detections/access

Update detections access control settings.

GET /extrahop/edition

Retrieve the system edition of the ExtraHop
appliance.

POST /extrahop/firmware

Upload a new firmware image to the ExtraHop
system. For more information, see Upgrade
ExtraHop firmware through the REST API.

POST /extrahop/firmware/latest/upgrade

Upgrade the ExtraHop system to the most recently
uploaded firmware image.

GET /extrahop/idrac Retrieve the iDRAC IP address of the ExtraHop
system.
GET /extrahop/platform Retrieve the platform name of the ExtraHop

system.

GET /extrahop/processes

Retrieve a list of processes running on the ExtraHop
system.

POST /extrahop/processes/{process}/restart

Restart a process running on the ExtraHop system.

ExtraHop 8.1 ExtraHop REST API Guide 36


https://docs.extrahop.com/8.1/alerts

Operation

Description

GET /extrahop/services

Retrieve settings for all services.

PATCH /extrahop/services

Update the settings for services.

POST /extrahop/restart

Restart the ExtraHop system.

POST /extrahop/sslcert Regenerate the SSL certificate on the ExtraHop
system. For more information, see Create a trusted
SSL certificate through the REST API

PUT /extrahop/sslcert Replace the SSL certificate on the ExtraHop system.

POST /extrahop/sslcert/signingrequest

Create an SSL certificate signing request. For more
information, see Create a trusted SSL certificate
through the REST API.

GET /extrahop/ticketing

Retrieve the ticketing integration status.

PATCH /extrahop/ticketing

Enable or disable ticketing integration.

GET /extrahop/version

Retrieve the version of the firmware running on the
ExtraHop system.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

License

This resource enables you to retrieve and set product keys or to retrieve and set a license.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /license Retrieve the license applied to this ExtraHop
system.

PUT /license Apply and register a new license to the ExtraHop

system.

GET /license/productkey

Retrieve the product key to this ExtraHop system.

PUT /license/productkey

Apply the specified product key to the ExtraHop
system and register the license.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Metrics

Metrics information is collected about every object identified by the ExtraHop appliance.

Note that metrics are retrieved through the POST method, which creates a query to collect the requested
information through the API. For more information, see Extract metrics through the REST API 2.

The following table displays all of the operations you can perform on this resource:

ExtraHop 8.1 ExtraHop REST API Guide 37


https://docs.extrahop.com/8.1/rest-extract-metrics

Operation Description

POST /metrics Perform a metric query.

GET /metrics/next/{xid} If a previous metric query requested activity group
metrics from a Command appliance, the GET /
metrics/next/{xid} operation retrieves metrics
for the activity group on a connected Discover
appliance. Each time a request is sent to GET /
metrics/next/{xid}, the operation returns metrics
from a different Discover appliance. After all
metrics have been retrieved, the operation returns

null.
POST /metrics/total Perform a metric query for total values.
POST /metrics/totalbyobject Perform a metric query for total values that are

grouped by object.

For example, if you want to see all HTTP responses that occurred on the network in the last 30 minutes,
enter the following request schema into the POST / netri cs operation:

{
"cycle": "auto",
"fron': -1800000,
"metric_category": "http",
"metric_specs": |
"name": "rsp"
}
I _
"object _ids": [
0
1 N
"obj ect _type": "application",
"until": O
}

The response body returns a list of HTTP responses and the time of each event, similar to the following
output:

"stats": |
U,
"oid": O,
"time": 1494539640000,
"duration": 30000,
"val ues": [

354
]
I
i
"oid": O,
"tinme": 1494539640000,
"duration": 30000,
"val ues": |
354
]
b
{

ExtraHop 8.1 ExtraHop REST API Guide 38



"oid": O,

"tinme": 1494539640000,
"duration": 30000,
"val ues": [

354
]
lis
1,
"cycle": "30sec",
"node_id": O,

"cl ock": 1494541440000,
"fronm': 1494539640000,
"until": 1494541440000

}

Enter the same request schema into the POST / netri cs/t ot al operation to retrieve a count of all
HTTP responses that occurred on the network in the last 30 seconds. The response body is similar to the
following output:

{

"stats": |

i,
"oid": -1,
"tinme": 1494541380000,
"duration": 1800000,
"val ues": |

33357

]

}

ycle": "30sec",
"node_id": O,
"cl ock": 1494541440000,
"fron': 1494539640000,
"until": 1494541440000

}

]

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Supported time units
For most parameters, the default unit for time measurement is milliseconds. However, the following
parameters return or accept alternative time units such as minutes and hours:
e Device
e active_from
e active_until
e Device group

e active_from
e active_until

e Metrics
e from
e until

e Record Log

e from
e until

ExtraHop 8.1 ExtraHop REST API Guide 39



e context_ttl

The following table displays supported time units:

Time unit Unit suffix
Year y

Month M

Week w

Day d

Hour h

Minute m

Second s
Millisecond ns

To specify a time unit other than milliseconds for a parameter, append the unit suffix to the value. For
example, to request devices active in the last 30 minutes, specify the following parameter value:

GET / api/vl/ devi ces?active_from=-30m

The following example specifies a search for HTTP records created between 1 and 2 hours ago:

{
"from': "-2h",
"until": "-1h",
"types": ["~http"]

Network

Networks are correlated to the network interface card that receives input from all of the objects identified
by the ExtraHop system.

On an ExtraHop Command appliance, each connected appliance is identified as a network capture that is
looking at the traffic for each ExtraHop Discover appliance that is connected to the Command appliance.
For more information, see Networks .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /networks Retrieve all networks.

GET /networks/{id} Retreive a specific network by ID.

PATCH /networks/{id} Update a specific network by ID.

GET /networks/{id}/alerts Retrieve all alerts that are assigned to a specific
network.

POST /networks/{id}/alerts Assign and unassign alerts to a specific network.

DELETE /networks/{id}/alerts/{child-id} Unassign an alert from a specific network.

POST /networks/{id}/alerts/{child-id} Assign an alert to a specific network.

ExtraHop 8.1 ExtraHop REST API Guide 40


https://docs.extrahop.com/8.1/assets-overview/#networks

Operation

Description

GET /networks/{id}/pages

Retrieve all pages that are assigned to a specific
network.

POST /networks/{id}/pages

Assign and unassign pages to a specific network.

DELETE /networks/{id}/pages/{child-id}

Unassign a page from a specific network.

POST /networks/{id}/pages/{child-id}

Assign a page to a specific network.

GET /networks/{id}/vlans

Retrieve all VLANS assigned to a specific network.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Network locality entry

You can manage a list that specifies the network locality of IP addresses.

For example, you can create an entry in the network locality list that specifies that an IP address or CIDR

block is internal or external.

The following table displays all of the operations you can perform on this resource:

Operation

Description

GET /networklocalities

Retrieve all network locality entries.

POST /networklocalities

Create a network locality entry.

DELETE /networklocalities/{id}

Delete a network locality entry.

GET /networklocalities/{id}

Retrieve a specific network locality entry.

PATCH /networklocalities/{id}

Apply updates to a specific network locality entry.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Node

A node is defined by its relationship to an ExtraHop Command appliance. The environment which contains
Discover nodes and a Command appliance is called a Command cluster.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /nodes Retrieve all Discover nodes connected to this
Command appliance.

GET /nodes/{id} Retrieve a specific Discover node that is connected

to this Command appliance.

PATCH /nodes/{id}

Update a specific Discover node that is connected
to this Command appliance.

ExtraHop 8.1 ExtraHop REST API Guide 41



Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Observations

An observation associates the IP address of a device on the ExtraHop system with an IP address outside
of your network. For example, you can track the activity of a VPN user by associating the IP address of
the VPN client on your internal network with the external IP address assigned to the user on the public
internet.

The following table displays all of the operations you can perform on this resource:

Operation Description

Add an observation to create an association
between device IP addresses.

POST /observations/associatedipaddrs

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Open Data Stream

An open data stream (ODS) is a channel through which you can send specified metric data to an external,
third-party system. For example, you might want to store or analyze metric data with a remote tool, such as
Splunk, MongoDB, or Amazon Web Services (AWS).

Sending data through an open data stream is a two-step procedure. First, you configure a connection to the
target system that will receive the data. Second, you write a trigger that specifies what data to send to the
target system and when to send it. For more information, see Open Data Streams .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /odstargets Retrieve all Open Data Stream targets.

GET /odstargets/http Retrieve all HTTP Open Data Stream targets.
POST /odstargets/http Create a new HTTP Open Data Stream target.

DELETE /odstargets/http/{name}

Delete an HTTP Open Data Stream target.

GET /odstargets/http/{name}

Retrieve a specific HTTP Open Data Stream target.

GET /odstargets/kafka

Retrieve all Kafka Open Data Stream targets.

POST /odstargets/kafka

Create a new Kafka Open Data Stream target.

DELETE /odstargets/kafka/{name}

Delete a Kafka Open Data Stream target.

GET /odstargets/kafka/{name}

Retrieve a specific Kafka Open Data Stream target.

GET /odstargets/mongodb

Retrieve all MongoDB Open Data Stream targets.

POST /odstargets/mongodb

Create a new MongoDB Open Data Stream target.

DELETE /odstargets/mongodb/{name}

Delete a MongoDB Open Data Stream target.

GET /odstargets/mongodb/{name}

Retrieve a specific MongoDB Open Data Stream
target.

ExtraHop 8.1 ExtraHop REST API Guide 42


https://docs.extrahop.com/8.1/open-data-streams

Operation Description

GET /odstargets/raw Retrieve all Raw Open Data Stream targets.

POST /odstargets/raw Create a new Raw Open Data Stream target.
DELETE /odstargets/raw/{name} Delete a Raw Open Data Stream target.

GET /odstargets/raw/{name} Retrieve a specific Raw Open Data Stream target.
GET /odstargets/syslog Retrieve all Syslog Open Data Stream targets.
POST /odstargets/syslog Create a new Syslog Open Data Stream target.
DELETE /odstargets/syslog/{name} Delete a Syslog Open Data Stream target.

GET /odstargets/syslog/{name} Retrieve a specific Syslog Open Data Stream target.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Packet capture
You can retrieve and delete packets stored on ExtraHop Discover appliances.

E Note: For ExtraHop Reveal(x), this resource is not supported and has been replaced by the Packet
Search resource.

You must write a trigger to identify the information you want to generate. For example, you can write a
trigger to collect all of the packets going to a particular device that is generating a high volume of errors.
Then, you can download or delete that information. For more information, see Packets .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /packetcaptures Retrieve metadata about all packet captures stored
on this ExtraHop appliance.

DELETE /packetcaptures/{id} Permanently remove a specific packet capture from
the ExtraHop system.

GET /packetcaptures/{id} Download a specific packet capture in PCAP format.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Packet Search

You can search for and download packets stored on ExtraHop Trace and Discover appliances. The
downloaded packets can then be analyzed through a third-party tool, such as Wireshark.

Note: This resource can only retrieve packets stored on ExtraHop Trace appliances. To retrieve
packets stored on a Discover appliance, see the Packet Capture resource.

For more information about Packets, see Packets .

The following table displays all of the operations you can perform on this resource:

ExtraHop 8.1 ExtraHop REST API Guide 43


https://docs.extrahop.com/8.1/packets
https://docs.extrahop.com/8.1/packets

Operation Description

GET /packets/search Search for packets by specifying parameters in a
URL.

POST /packets/search Search for packets by specifying parameters in a
JSON string.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Filter packets with Berkeley Packet Filter syntax

Search for packets with the Berkeley Packet Filter (BPF) syntax alone, or in combination with the built-in
filters.

Berkeley Packet Filters are a raw interface to data link layers and are a powerful tool for intrusion detection
analysis. The BPF syntax enables users to write filters that quickly drill down on specific packets to see the
essential information.

The ExtraHop system constructs a synthetic packet header from the packet index data and then runs the
BPF syntax queries against the packet header to ensure that queries are much faster than scanning the full
packet payload. Note that ExtraHop supports only a subset of the BPF syntax. See Supported BPF syntax.

The BPF syntax consists of one or more primitives preceded by one or more qualifiers. Primitives usually
consist of an ID (name or number) preceded by one or more qualifiers. There are three different kinds of
qualifiers:

type
Qualifiers that indicate what type the ID name or number refers to. For example, host , net, port,
and por t r ange. If there is no qualifier, host is assumed.

dir
Qualifiers that specify a particular transfer direction to and or from an ID. Possible directions are
src,dst,src and dst,andsrc or dst.Forexample, dst net 128. 3.

proto

Qualifiers that restrict the match to the particular protocol. Possible protocols are et her, i p,i p6,
t cp, and udp.

Add a filter with BPF syntax

1. Login to the ExtraHop system through ht t ps: / / <ext r ahop- host name- or - | P- addr ess>.
2. From the top menu, click Packets.

3. Inthe trifield filter section, select BPF, and then type your filter syntax. For example, type sr c
portrange 80-443 and net 10. 10.

4. Click Download PCAP to save the packet capture with your filtered results.

=@ExtiaHop Dashboards  Alerts Anomalics Metrics  Records  Packets  Sescn 0 4 A

£ | o S min » T b PadetGuetes + New Padet Quny

Pkt Query A5.L8Y gt (4T IR

Dowmicgd PLAR
From Febs 18, 240034 o e ety 14, B 1004 pem
| 057 = s parange 00443 et it 3030
BEF w e 45, A8 paciarty
Prrviewing 20 pachets sl Febs 143 1035 714 g

Tee = -1 Bhets  Sefor DutPert Mag Bytei S MAC it MAL [ -
20180014 153054 1010001 249 1010.9.59 bl 443 LW ACW A5 SLARRT I OO 505594 T2 et I
IR0 1A 15T 05 indi e 1030955 b= d 443 AR A 4 ALARARILE O 3055 T P
20080314 1520054 pLER R 1010252 ki< 483 4TS PBHA I ST OGDe DOOBOC OAL et

M pacet preview M4

ExtraHop 8.1 ExtraHop REST API Guide

44



Supported BPF syntax
The ExtraHop system supports the following subset of the BPF syntax for filtering packets.

E Note: o

ExtraHop only supports numeric IP address searches. Hostnames are not allowed.

e Indexing into headers, [ .}, is only supported fort cpf | ags andi p_of f set. For

example, tcp[tcpflags] & (tcp-syn|tcp-fin)

=0

e ExtraHop supports both numeric and hexadecimal values for VLAN ID, EtherType, and
IP Protocol fields. Prefix hexadecimal values with Ox, such as Ox11.

Primitive

Examples

Description

[src|dst] host <host ip>

host 203.0.113.50
dst host 198.51.100. 200

Matches a host as the IP source,
destination, or either. These host
expressions can be specified in
conjunction with other protocols
like ip, arp, rarp or ipé.

ether [src|dst] host et her host Matches a host as the Ethernet
<MAC> 00: 00: 5E: 00: 53: 00 source, destination, or either.
et her dst host
00: 00: 5E: 00: 53: 00
vl an <I D> vl an 100 Matches a VLAN. Valid ID

numbers are 0- 4095. VLAN
priority bits are zero.

If the original packet had more
than one VLAN tag, the synthetic
packet the BPF matches against
will only have the innermost
VLAN tag.

[src|dst] portrange <pl>-
<p2>

src portrange 80-88
tcp dst portrange

Matches packets to or from a port
in the given range. Protocols can
be applied to a port range to filter

or 1501-1549 specific packets within the range.
[tcp|udp] [src|dst]

portrange <pl>-<p2>

[iplip6][src|dst] proto proto 1 Matches IPv4 or IPvé protocols

<pr ot ocol >

src 10.4.9.40 and proto
| VP

i p6 and src
f e80: : aebc: 32f f: f e84: 70b7
and proto 47

ip and src 10.4.9.40 and
prot o 0x0006

other than TCP and UDP. The
protocol can be a number or
name.

[iplip6][tcp|udp] [src]
dst] port <port>

udp and src port 2005

Matches IPv4 or IPvé packets on
a specific port.

i p6 and tcp and src port
80
[src|dst] net <network> dst net 192.168.1.0 Matches packets to or from a
src net 10 source or dfastination or either,
that reside in a network. An IPv4
net 192.168.1.0/ 24

ExtraHop 8.1 ExtraHop REST API Guide

45



Primitive

Examples

Description

network number can be specified
as one of the following values:

e Dotted quad (x.x.x.x)
e Dotted triple (x.x.x)
e Dotted pair (x.x)

e Single number (x)

[ip|]ip6] tcp tcpflags &
(tcp-[ack|fin|syn|rst] ack) '=0
push|urgl)

tcp[tcpflags] & (tcp-

Matches all packets with the
specified TCP flag

tcp[13] & 16 !=0

i p6 and (i p6[40+13] &

(tcp-syn)

= 0)

Fragmented IPv4 packets

(ip_offset !=0) 0x0000

ip[6:2] & Ox3fff !=

Matches all packets with
fragments.

Page

Pages provide a template for creating a customized view of built-in metrics or metrics collected from

triggers.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /pages Retrieve all pages.
POST /pages Create a page.
DELETE /pages/{id} Delete a single page.
GET /pages/{id} Retrieve a single page.

PATCH /pages/{id}

Update a single page.

GET /pages/{id}/applications

Retrieve all applications that have a specific page
assigned.

POST /pages/{id}/applications

Assign and unassign a specific page to applications.

DELETE /pages/{id}/applications/{child-id}

Unassign an application from a specific page.

POST /pages/{id}/applications/{child-id}

Assign an application to a specific page.

GET /pages/{id}/devicegroups

Retrieve all device groups that are assigned to a
specific page.

POST /pages/{id}/devicegroups

Assign and unassign a specific page to device
groups.

DELETE /pages/{id}/devicegroups/{child-id}

Unassign a device group from a specific page.

POST /pages/{id}/devicegroups/{child-id}

Assign a device group to a specific page.

GET /pages/{id}/devices

Retrieve all devices that have a specific page
assigned.

POST /pages/{id}/devices

Assign and unassign a specific page to devices.

ExtraHop 8.1 ExtraHop REST API Guide 46



Operation

Description

DELETE /pages/{id}/devices/{child-id}

Unassign a device from a specific page.

POST /pages/{id}/devices/{child-id}

Assign a device to a specific page.

GET /pages/{id}/networks

Retrieve all networks that have a specific page
assigned.

POST /pages/{id}/networks

Assign and unassign a specific page to networks.

DELETE /pages/{id}/networks/{child-id}

Unassign a network from a specific page.

POST /pages/{id}/networks/{child-id}

Assign a network to a specific page.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Pairing

This resource enables you to generate a token required to connect a Discover appliance to a Command

appliance.

The following table displays all of the operations you can perform on this resource:

Operation

Description

POST /pairing/token

Generate a token required to connect the Discover
appliance to a Command appliance.

Record Log

Records are structured flow and transaction information about events on your network.

After you connect an ExtraHop Discover appliance to an ExtraHop Explore appliance, you can generate and
send record information to the Explore appliance for storage, and you can query records to retrieve stored
information about any object on your network. For more information, see Query for records through the

REST API .

The following table displays all of the operations you can perform on this resource:

Operation

Description

GET /records/cursor/{cursor}

Deprecated. Replaced by POST /recor ds/

cursor.
POST /records/cursor Retrieve records starting at a specified cursor.
POST /records/search Perform a record log query.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Operand values in record queries

The oper and field in the POST / r ecor ds/ sear ch method specifies the value that a record query
attempts to match. You can specify either the value only or both the data type and the value. If you specify

ExtraHop 8.1 ExtraHop REST API Guide 47


https://docs.extrahop.com/8.1/rest-query-records
https://docs.extrahop.com/8.1/rest-query-records

only the value, the query will refer to the record format associated with the f i el d parameter to determine
the data type of the value.

For example, if you want to search for an IP address, you can specify an IP address data type, and then
provide the actual address as the value.

The following example explicitly specifies the data type and value of the operand:

"fronm: -1000,
"filter": {
"field" : "sender Addr",
"operator": "=",
"operand" : { "type" : "ipaddr4", "value": "1.2.3.4" }
}
}
The following example specifies only the value of the operand:
{
"from': -1000,
"filter": {
"field" : "senderAddr",
"operator": "=",
"operand" : "1.2.3.4"
}
}
You can explicitly specify the following data types in the oper and field:
e ipaddrd
e ipaddré
e device

Note: You must specify the discovery ID of the device in the value field. You can find the
discovery ID of a device through the GET / devi ces method.
e application
e string
e number
e boolean

The oper and field supports CIDR notation when filtering by IP addresses; the oper at or field must be set

to "="or "I=".

You can specify multiple filters by including the r ul es option, as shown in the following example:

"filter": {
"operator": "and",
"rules": [

"field": "nethod",
"operand": "SMB2_ READ',

"operator": "="

} il

L,
"field": "reqlL2Bytes",
"operand": "100",
"operator": ">"

}

]
b

ExtraHop 8.1 ExtraHop REST API Guide 48



"types": [
"~cifs"

“fromt: "-30mt

Supported time units

For most parameters, the default unit for time measurement is milliseconds. However, the following
parameters return or accept alternative time units such as minutes and hours:

e Device

e active_from
e active_until
e  Device group

e active_from
e active_until

e Metrics
e from
e until

e Record Log

e from
e until
e context_ttl

The following table displays supported time units:

Time unit Unit suffix
Year y

Month M

Week w

Day d

Hour h

Minute m

Second s
Millisecond ns

To specify a time unit other than milliseconds for a parameter, append the unit suffix to the value. For
example, to request devices active in the last 30 minutes, specify the following parameter value:

GET /api/vl/ devi ces?active_from=-30m

The following example specifies a search for HTTP records created between 1 and 2 hours ago:

nfromn: ”'2h”,
"until": "-1h",
"types": [II "‘"http"]

ExtraHop 8.1 ExtraHop REST API Guide 49



Report

A report is a PDF file of a dashboard that you can schedule for email delivery to one or more recipients. You
can specify how often the report email is delivered and the time interval for dashboard data included in the
PDF file.

@ Important: You can only schedule reports from an ExtraHop Command appliance.

Here are some important considerations about scheduled reports:

e You can only create a report for dashboards that you own or have been shared with you. Your ability to
create a report is determined by your user privileges. Contact your ExtraHop administrator for help.

e Each report can only link to one dashboard.

e If you created a report for a dashboard that was later deleted or became inaccessible to you, the
scheduled email will continue to be sent to recipients. However, the email will not include the PDF file
and will instead notify recipients that the dashboard is unavailable to the report owner.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /reports Retrieve all reports.

POST /reports Create a report.

DELETE /reports/{id} Delete a specific report.

GET /reports/{id} Retrieve a specific report.

PATCH /reports/{id} Update a specific report.

GET /reports/{id}/contents Retrieve the contents of a specific report.

PUT /reports/{id}/contents Replace the contents of a specific report.

POST /reports/{id}/emailgroups Change the email group assigned to a specific
scheduled report.

GET /reports/{id}/emailgroups Retrieve a list of email groups assigned to a specific
scheduled report.

DELETE /reports/{id}emailgroups/{group-id} Remove an email group from a specific scheduled
report.

POST /reports/{id}emailgroups/{group-id} Add an email group to a specific scheduled report.

POST /reports/{id}/queue Immediately generate and send a specific report.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Running config

The running configuration file is a JSON document that contains core system configuration information for
the ExtraHop system.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /runningconfig Retrieve the current running configuration file.

ExtraHop 8.1 ExtraHop REST API Guide 50



Operation Description

PUT /runningconfig Replace the current running configuration file.
Configuration file changes are not automatically
saved.

POST /runningconfig/save Save the current changes to the running

configuration file.

GET /runningconfig/saved Retrieve the saved running configuration file.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Software

You can view a list of software that the ExtraHop system has observed on your network.

Operation Description

GET /software Retrieve software observed by the ExtraHop
system.

GET /software/{id} Retrieve software observed by the ExtraHop
system by ID.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

SSL decrypt key

This resource enables you to add a decryption key for your network traffic.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /ssldecryptkeys Retrieve all SSL decryption keys.

POST /ssldecryptkeys Create a new SSL decryption key.

DELETE /ssldecryptkeys/{id} Remove an SSL key from the ExtraHop system.

GET /ssldecryptkeys/{id} Retrieve an SSL PEM and metadata.

PATCH /ssldecryptkeys/{id} Update an existing SSL decryption key.

GET /ssldecryptkeys/{id}/protocols Retrieve all protocols assigned to an SSL decryption
key.

POST /ssldecryptkeys/{id}/protocols Create a new protocol for an SSL decryption key.

DELETE /ssldecryptkeys/{id}/protocols/{child-id} Delete a protocol from an SSL decryption key.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

ExtraHop 8.1 ExtraHop REST API Guide 51



Support pack

A support pack is a file that contains configuration adjustments provided by ExtraHop Support.

The following table displays all of the operations you can perform on this resource:

Operation

Description

GET /supportpacks

Retrieve metadata about all support packs.

POST /supportpacks/execute

Run a new support pack.

GET /supportpacks/queue/{id}

Check on the status of an in-progress, running
support pack.

GET /supportpacks/{filename}

Downlolad an existing support pack by filename.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Tag

Device tags enable you to associate a device or group of devices by some characteristic.

For example, you might tag all of your HTTP servers or tag all of the devices that are in a common subnet.
For more information, see Tag a device through the REST API .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /tags Retrieve all tags.

POST /tags Create a a new tag.

DELETE /tags/{id} Delete a specific tag.

GET /tags/{id} Retrieve a specific tag.

PATCH /tags/{id} Apply updates to a specific tag.

GET /tags/{id}/devices Retrieve all devices that are assigned to a specific
tag.

POST /tags/{id}/devices Assign and unassign a specific tag to devices.

DELETE /tags/{id}/devices/{child-id}

Unassign a device from a specific tag.

POST /tags/{id}/devices/{child-id}

Assign a device to a specific tag.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Threat Collection

The Threat Collection resource enables you to upload Structured Threat Information eXpression (STIX) files
to threat collections in your Reveal(x) system. STIX files must be obtained from a TAXII server or threat
intelligence platform in TAR or TAR.GZ format, and then uploaded to your Reveal(x) system.

ExtraHop 8.1 ExtraHop REST API Guide 52


https://docs.extrahop.com/8.1/rest-tag-device

E Note: This topic applies only to ExtraHop Reveal(x) Premium and Ultra.

For information about uploading STIX files through the ExtraHop Web Ul, see Upload STIX files through
the REST API &,

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /threatcollections Retrieve all threat collections.

DELETE /threatcollections/{id} Delete a threat collection.

PUT /threatcollections/{id} Upload a new threat collection. ExtraHop currently

supports STIX versions 1.0 - 1.2.

E Note: If a threat collection with the same name
already exists on the appliance, the existing
threat collection is overwritten.

GET /threatcollections/{id}/observables Retrieve the number of STIX observables loaded
from a threat collection, such as IP address,
hostname, or URI.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Trigger

Triggers are custom scripts that perform an action upon a pre-defined event.

For example, you can write a trigger to record a custom metric every time an HTTP request occurs, or
classify traffic for a particular server as an Application server. For more information, see the Trigger API
Reference . For supplemental implementation notes about advanced options, see Advanced trigger
options.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /triggers Retrieve all triggers.

POST /triggers Create a new trigger.

POST triggers/externaldata Sends data to the Trigger API by running the

EXTERNAL_DATA event. You can access the data
through the ExternalData i trigger class.

DELETE /triggers/{id} Delete a specific identifier.

GET /triggers/{id} Retrieve a specific trigger by unique identifier.

PATCH /triggers/{id} Update an existing trigger.

GET /triggers/{id}/devicegroups Retrieve all device groups that are assigned to a
specific trigger.

POST /triggers/{id}/devicegroups Assign and unassign a specific trigger to device
groups.

DELETE /triggers/{id}/devicegroups/{child-id} Unassign a device group from a specific trigger.

ExtraHop 8.1 ExtraHop REST API Guide 53


https://docs.extrahop.com/8.1/rest-upload-stix
https://docs.extrahop.com/8.1/rest-upload-stix
https://docs.extrahop.com/8.1/extrahop-trigger-api/
https://docs.extrahop.com/8.1/extrahop-trigger-api/
https://docs.extrahop.com/8.1/extrahop-trigger-api/#externaldata

Operation

Description

POST /triggers/{id}/devicegroups/{child-id}

Assign a device group to a specific trigger.

GET /triggers/{id}/devices

Retrieve all devices that are assigned to a specific
trigger.

POST /triggers/{id}/devices

Assign and unassign a specific trigger to devices.

DELETE /triggers/{id}/devices/{child-id}

Unassign a device from a specific trigger.

POST /triggers/{id}/devices/{child-id}

Assign a device to a specific trigger.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as

parameters, response class and messages, and JSON model and schema.

Advanced trigger options

Advanced trigger options are configuration options that you can set depending on the system events
associated with the trigger. For example, you can configure the number of payload bytes to buffer on HTTP

request events.

Advanced options are contained in the hi nt s object of the trigger resource as shown in the following

example:
"hints": {
"flowCl i entPort M n": null,
"flowd i ent Bytes": 16384,
"flowC ientPortMax": null,
"fl owServerBytes": 16384,
"fl owPayl oadTurn": true,
"fl owServerPortM n": 135,
"fl owServer Port Max": 49155

}

The following table describes available advanced options and applicable events:

Option Description

Applicable events

Specifies the number of bytes

to capture per packet, up to a
maximum of 65535. The capture
starts with the first byte in the
packet. Specify this option only
if the trigger script captures
packets.

"“snapl en": nunber

A value of 0 configures the trigger *

to capture the maximum number
of bytes for each packet.

All events except:

ALERT_RECORD_COMMIT
METRIC_CYCLE_BEGIN
e METRIC_CYCLE_END
e FLOW_REPORT
e NEW_APPLICATION
NEW_DEVICE
e SESSION_EXPIRE

Specifies the minimum number of
payload bytes to buffer.

"payl oadByt es": numnber

e CIFS_REQUEST

e CIFS_RESPONSE
e HTTP_REQUEST
e HTTP_RESPONSE
e ICA_TICK

ExtraHop 8.1 ExtraHop REST API Guide 54



Option Description Applicable events
“clipboardBytes": number Specifies the number of bytes ICA TICK

to buffer on a Citrix clipboard -

transfer.
"cycle": [30sec, 5nin, Specifies the length of the metric METRIC CYCLE BEGIN
lhr, 24hr] cycle, expressed in seconds. METRIC_CYCLE_END

METRIC_RECORD_COMMIT

"metricTypes": string Specifies the metric type by ALERT _RECORD_COMMIT

the raw metric name such as
extrahop.device.http_server.

METRIC_RECORD_COMMIT

"fl owPayl oadTur n":
bool ean

Enables packet capture on each
flow turn.

Per-turn analysis continuously
analyzes communication between
two endpoints to extract a single
payload data point from the flow.

If this option is enabled,

any values specified for the
flowdientStringand

f1 owServer St ri ng options are
ignored.

SSL_PAYLOAD
TCP_PAYLOAD

"flowC ientPortMn":
numnber

Specifies the minimum port
number of the client port range.

Valid values are 0 to 65535.

A value of 0 specifies matching of
any port.

SSL_PAYLOAD
TCP_PAYLOAD
UDP_PAYLOAD

"fl owd i ent Port Max":
nunber

Specifies the maximum port
number of the client port range.

Valid values are 0 to 65535.

Any value specified for this option
is ignored if the value of the
flowd i ent Port M n optionis
0.

SSL_PAYLOAD
TCP_PAYLOAD
UDP_PAYLOAD

"flowC ientBytes": nunber

Specifies the number of client
bytes to buffer.

The value of this option cannot
be set to 0 if the value of the

f 1 owSer ver Byt es option is also
setto 0.

SSL_PAYLOAD
TCP_PAYLOAD

"flowClientString":
string

Specifies the format string of
client data to process.

Any value specified for

this option is ignored if the

f 1 owPayl oadTur n option is
enabled.

SSL_PAYLOAD
TCP_PAYLOAD
UDP_PAYLOAD

ExtraHop 8.1 ExtraHop REST API Guide 55



Option

Description

Applicable events

"fl owServerPortM n":

nunber

Specifies the minimum port
number of the server port range.

Valid values are 0 to 65535.

A value of 0 specifies matching of
any port.

SSL_PAYLOAD
TCP_PAYLOAD
UDP_PAYLOAD

"fl owSer ver Por t Max" :

nunber

Specifies the maximum port
number of the server port range.

Valid values are 0 to 65535.

Any value specified for this option
is ignored if the value of the

f 1 owSer ver Port M n option is
0.

SSL_PAYLOAD
TCP_PAYLOAD
UDP_PAYLOAD

"fl owServer Byt es":

Specifies the number of server
bytes to buffer.

The value of this option cannot
be set to O if the value of the

fl owd i ent Byt es option is also
setto 0.

SSL_PAYLOAD
TCP_PAYLOAD

"flowServerString":

string

Specifies the format string of
server data to process. Returns
the entire packet upon a string
match.

Any value specified for

this option is ignored if the

f | owPayl oadTur n option is
enabled.

SSL_PAYLOAD
TCP_PAYLOAD
UDP_PAYLOAD

“fl owldpAl | ":

Enables capture of all UDP
datagrams.

UDP_PAYLOAD

"fired assifyOnExpiration"

bool ean

Enables running the event upon
expiration in order to accumulate
metrics for flows that were not
classified before expiring.

FLOW_CLASSIFY

User

The user resource enables you to create and manage the list of users who have access to the ExtraHop
system and the privilege levels for those users.

The following table displays all of the operations you can perform on this resource:

Operation

Description

GET /users

Retrieve all users.

POST /users

Create a new user.

DELETE /users/{username}

Delete a specific user.

ExtraHop 8.1 ExtraHop REST API Guide 56



Operation

Description

GET /users/{username}

Retrieve a specific user.

PATCH /users/{username}

Update settings for a specific user.

GET /users/{username}/apikeys

Retrieve all API keys for a specific user.

GET /users/{username}/apikeys/{keyid}

Retrieve information about a specific API key and
user.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

User group

The user group resource enables you to manage and update groups of users and their dashboard sharing

associations.

The following table displays all of the operations you can perform on this resource:

Operation Description
GET /usergroups Retrieve all user groups.
POST /usergroups Create a new user group.

POST /usergroups/refresh

Query LDAP for the most recent user memberships
for all remote user groups.

DELETE /usergroups/{id}

Delete a specific user group.

GET /usergroups/{id}

Retrieve a specific user group.

PATCH /usergroups/{id}

Update a specific user group.

DELETE /usergroups/{id}/associations

Delete all dashboard sharing associations with a
specific user group.

GET /usergroups/{id}/members

Retrieve all members of a specific user group.

PATCH /usergroups/{id}/members

Assign or unassign users from a user group.

PUT /usergroups/{id}/members

Replace user group assignments.

POST /usergroups/{id}/refresh

Query LDAP for the most recent user membership
of a specific remote user group.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

VLAN

Virtual LANs are logical groupings of traffic or devices on the network.

The following table displays all of the operations you can perform on this resource:

Operation

Description

GET /vlans

Retrieve all VLANSs

ExtraHop 8.1 ExtraHop REST API Guide 57



Operation Description

GET /vlans/{id} Retrieve a specific VLAN.

PATCH /vlans/{id} Update a specific VLAN.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Whitelist (Watchlist)

To guarantee that an asset, such as an important server, database, or laptop, is guaranteed Advanced
Analysis, you can add that device to the whitelist, which is referred to as the watchlist in the Web UI.

@ Tip: If you want to add several devices to the whitelist, consider creating a device group and then
prioritizing that group for Advanced Analysis.

Here are important considerations about the whitelist:

e The whitelist only applies to Advanced Analysis.

e The whitelist can contain as many devices as allowed by the Advanced Analysis capacity, which is
determined by your license.

e A device stays on the whitelist whether it is inactive or active. A device has to be active for the
ExtraHop system to collect Advanced Analysis metrics.

For more information about Advanced Analysis, see Analysis levels 2.

The following table displays all of the operations you can perform on this resource:

Operation Description

DELETE /whitelist/device/{id} Remove a device from the whitelist.

POST /whitelist/device/{id} Add a device to the whitelist.

GET /whitelist/devices Retrieve all devices that are in the whitelist.
POST /whitelist/devices Add or remove devices from the whitelist.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

ExtraHop 8.1 ExtraHop REST API Guide 58


https://docs.extrahop.com/8.1/analysis_priorities/#compare-analysis-levels

ExtraHop REST API examples

The following examples demonstrate common REST API operations.

e Change a dashboard owner through the REST API

e Extract the device list through the REST API

e Create and assign a device tag through the REST API

e Query for metrics about a specific device through the REST API
e Create, retrieve, and delete an object through the REST API

e Query the record log

Upgrade ExtraHop firmware through the REST API

You can automate upgrades to the firmware on your ExtraHop appliances through the ExtraHop REST API.
This guide includes methods for both the cURL command and a Python script.

While the firmware upgrade process is similar across all ExtraHop appliances, some appliances have
additional considerations or steps that you must address before you install the firmware in your
environment. If you need assistance with your upgrade, contact ExtraHop Support.

All appliances must meet the following requirements:

e The firmware version must be compatible with your appliance model.
e The firmware version on your appliance must be supported by the upgrade version.

e Command appliances must be running firmware that is greater than or equal to their connected
appliances.

e Discover appliances must be running firmware that is greater than or equal to Explore and Trace
appliances.

If your deployment only includes a Discover appliance, proceed to the cURL or Python upgrade
instructions.

If your deployment includes additional appliance types, you must address the following dependencies
before proceeding with the upgrade instructions.

If your deployment includes... Pre-upgrade tasks Upgrade order

Command appliances Reserve a maintenance window of
an hour for Command appliances
managing 50,000 devices or more. .

Command appliance
Discover appliances

All Explore appliances
Explore appliances See Upgrading Explore appliances. (master nodes, then data
nodes)

e Trace appliances

Trace appliances None

Upgrade ExtraHop firmware with cURL

You can upgrade the firmware on an ExtraHop appliance through the cURL command.

Before you begin

e The cURL tool must be installed on your machine.
e The appliance firmware .tar file must be downloaded on your machine.

1. Open a terminal application.
2. Upload the firmware file.

ExtraHop 8.1 ExtraHop REST API Guide

59



Run the following command, where YOUR_KEY is the API key for your user account, HOSTNAME is
the hostname of your ExtraHop appliance, and FI LE_PATHis the relative file path of the appliance
firmware .tar file:

curl -X POST https://HOSTNAMVE/ api / v1l/ extrahop/firmvare --data-binary
@ LE_PATH -H "Cont ent - Type: appl i cati on/ vnd. extrahop. firnware" -H
"Aut hori zation: ExtraHop api key=YOUR_KEY"

3. Upgrade the appliance firmware.

Run the following command, where YOUR_KEY is the API key for your user account, and HOSTNAME is
the hostname of your ExtraHop appliance:

curl -X POST "https://HOST/ api/vl/ extrahop/firmvare/l atest/upgrade” -H
"accept: application/json" -H "Authorization: ExtraHop api key=YOUR_KEY"
-H "Content - Type: application/json" -d "{ \"restart_after\": true}"

4. Verify that the appliance has been successfully upgraded.

Run the following command, where YOUR_KEY is the API key for your user account, and HOSTNAME is
the hostname of your ExtraHop appliance:

curl -X CGET https://HOST/ api /vl/ extrahop -H "Aut horization: ExtraHop
api key=YOUR_KEY"

The command displays an object that contains information about the firmware currently running on the
appliance. Verify that the version field matches the firmware version you are upgrading to. If the above
command does not display the correct version number, wait a few minutes, and then try again. It might
take several minutes for the upgrade to complete.

Python script example

The following example Python script upgrades multiple appliances by reading the appliance URLs, API keys,
and firmware file paths from a CSV file.

Each row of the CSV file must contain the following columns in the specified order:

Appliance HTTPS URL APl key Firmware file path

The script includes the following configuration variable that you must replace with information from your
environment:

e APPLIANCE_LIST: The relative file path of the CSV file.

E Note: The script does not automatically disable record ingest for Explore appliances. You must
manually disable record ingest before running the script for an Explore appliance.

#!' [ usr/ bi n/ pyt hon3

i mport os
i mport requests
i mport csv

APPLI ANCE LI ST = ' appl i ances. csV'

# Retrieve URLs, APl keys, and firmware fil e paths
appl i ances = []
wi th open( APPLI ANCE LI ST, 'rt', encoding="ascii') as f:
reader = csv.reader(f)
for row in reader:
appliance = {
"host': row 0],

ExtraHop 8.1 ExtraHop REST API Guide 60



"api _key': row 1],
"firmvare' : row 2]

appl i ances. append( appl i ance)

# Function that uploads firmvare to appliance
def upl oadFi r mvar e(host, api _key, firmware):
headers = {
"Aut horization': 'ExtraHop api key=%"' % api _key,
" Content-Type': 'application/vnd. extrahop.firmare'

url = host + 'api/vl/extrahop/firnnare'
file path = os.path.join(firmare)
data = open(file_path, 'rb")
r = requests. post(url, data=data, headers=headers)
if r.status_code == 201:
print(' Upl oaded firmvare to ' + host)
return True
el se:
print('Failed to upload firnware to ' + host)
print(r.text)
return Fal se

# Function that upgrades firmwvare on appliance
def upgradeFi rmwar e( host, api _key):
headers = {' Authorization': 'ExtraHop api key=%"' % api _key}
url = host + 'api/vl/ extrahop/firnmrare/l atest/upgrade
r = requests. post(url, headers=headers)
print(r.status_code)
if r.status_code == 202:
print (' Upgraded firmvare on ' + host)
return True
el se:
print('Failed to upgrade firmvware on ' + host)
print(r.text)
return Fal se

# Upgrade firnmware for each appliance
for appliance in appliances:
host = appliance[' host']
api _key = appliance[' api _key']
firmvare = appliance['firmare']
upl oad_success = upl oadFi r mnvar e( host, api _key, firmare)
i f upl oad_success:
upgr adeFi r mnar e( host, api _key)

E Note: If the script returns an error message that the SSL certificate verification failed, make sure
that a trusted certificate has been added to your ExtraHop system . Alternatively, you can
add the veri f y=Fal se option to bypass certificate verification. However, this method
is not secure and is not recommended. The following code sends an HTTP GET request
without certificate verification:

requests. get (url, headers=headers, verify=Fal se)

Upgrading Explore appliances

Pre-upgrade tasks

Before upgrading an Explore appliance, you must halt record ingest. You can halt record ingest for all of the
nodes in a cluster from a single node.

ExtraHop 8.1 ExtraHop REST API Guide 61


https://docs.extrahop.com/8.1/eh-admin-ui-guide/#ssl-certificate

E Note: The message Coul d not determ ne ingest status on sone nodes and Error
might appear on the Cluster Data Management page in the Admin Ul of the upgraded nodes
until all nodes in the cluster are upgraded. These errors are expected and can be ignored.

Open a terminal application.

Run the following command, where YOUR_KEY is the API for your user account, and HOSTNAME is the
hostname of your Explore appliance:

curl -X PATCH "https://HOST/ api/vl/ extrahop/cluster" -H "accept:
application/json" -H "Authorization: ExtraHop api key=YOUR_KEY" -H
"Content - Type: application/json" -d "{ \"ingest _enabled\": false}"

Post-upgrade tasks

After you have upgraded all of the nodes in the Explore cluster, enable record ingest.

1.
2.

Open a terminal application.

Run the following command, where YOUR_KEY is the API for your user account, and HOSTNAME is the
hostname of your Explore appliance:

curl -X PATCH "https://HOST/ api/vl/ extrahop/cluster” -H "accept:
application/json"” -H "Authorization: ExtraHop api key=YOUR_KEY" -H
"Cont ent - Type: application/json" -d "{ \"ingest _enabled\": false}"

Change a dashboard owner through the REST API

Dashboards are owned by the logged in user that created them. If a user is no longer with your company,
you might need to change the owner of the dashboard to maintain that dashboard.

To transfer ownership of a dashboard, you need the dashboard ID and the username of the dashboard
owner. You can only view the username of the owner of a dashboard through the REST API.

Before you begin

You must log in to the ExtraHop system with an account that has unlimited privileges to generate an
API key.

You must have a valid APl key to make changes through the REST APl and complete the procedures
below. (See Generate an API key.)

Familiarize yourself with the ExtraHop REST API Guide & to learn how to navigate the ExtraHop REST
API Explorer.

Retrieve the dashboard IDs

1.

w

In a browser, navigate to the REST API Explorer.

The URL is the hostname or IP address of your ExtraHop Discover or Command appliance, followed by
/ api / v1/ expl or e/ . For example, if your hostname is seattle-eda, the URLisht t ps: //seattl e-
eda/ api /vl/ expl ore/.

Click Enter API Key and then paste or type your APl key into the API Key field.
Click Authorize and then click Close.
Click Dashboard to display dashboard operations.

ExtraHop 8.1 ExtraHop REST API Guide 62


https://docs.extrahop.com/8.1/rest-api-guide/

<

Dashboard

/dashboards Retrieve all dashboards

‘ IEEEEE) /dasnboards/ (id) Delete a speciic dashvoard

/dashboards/{id} Retrieve a specific dashboard

/dashboards/{id} Update ownership of a specific dashboard

/dashboards/{id}/reports Retrieve reports that contain a specific dashboard.

/dashboards/{id}/sharing Retrieve the users and their sharing permissions for a specific dashboard

/dashboards/{id}/sharing Update the users and their sharing permissions for a specific dashboard,

/dashboards/{id}/sharing Replace the users and their sharing permissions for a specific dashboard.

5. Click GET /dashboards.

6. Click Try it out and then click Send Request to send the request to your appliance.

7. Search for the dashboards by the dashboard name or by the user account listed in the " owner " field. If
your list of dashboards is long, you can press control-F and search the response body.

For our example, we want to change the " LDAP Ser ver Heal t h" dashboard created by the user
account for " mar ksni t h":

{
"id": 1876,
"comment": null,
"mod_tine": 1507576983922,
"author": "Mark Smth",
"nane": "LDAP Server Heal th",
"owner": "marksmth",
"built-in": fal se,
"short _code": "MXgk",
"rights": |
"transfer",
"view',
"edit",
"share",
"del et e"
]
}

8. Note the numberinthe"i d" field for each dashboard you want to modify.

Change the dashboard owner

1. Scroll down the page of Dashboard operations to the /dashboards/{id} section.
Click PATCH /dashboards/{id}.

3. Click Try it out.
The JSON schema is automatically added to the body parameter text box.

In the body text box, in the " owner " field, replace st ri ng with the username of the new owner.
5. Intheid field, type the number you previously noted for the dashboard.

For our example, this value is 1876. (You can only modify one dashboard at a time through the REST
API Explorer.)

In the following figure, we added the JSON "stri ng" for the " owner " parameter to the body
parameter text box, changed " st ri ng" to " paul ander son", and typed " 1876" in the id field.

ExtraHop 8.1 ExtraHop REST API Guide 63



Parameters

Name Description

body * The username of the dashboard owner.
(body)

Edit Value Model

{

"owner": "paulanderson”

e L

Parameter content type

application/json ~
id* The unigue identifier for the dashboard.
. 31
:Lntjcgrl:r[ ints4d) 1876
(path)

6. Click Send Request to send the request to your appliance.
Under Server response, the Code column displays 204 if the operation is successful. You can click
GET /dashboards again to verify that the " owner " field has changed. Note that you can only change
the dashboard owner. You cannot change the dashboard name or author fields through the REST API.

The dashboard is now available under My Dashboards in the ExtraHop Web Ul for the new user. As
the new owner, you can now log in to your ExtraHop system and change other dashboard properties,
such as the dashboard name or author.

Tip: After you click Send Request, the REST API Explorer provides scripts for the operation in Curl,
Python 2.7, or Ruby.

Python script example

The following example script searches for all dashboards owned by the user account mar ksni t h on an
ExtraHop appliance with the hostname ext r ahop. exanpl e. comand then changes the owner for all of
those dashboards to the user account paul ander son.

#! /[ usr/ bi n/ pyt hon3

i mport http.client
i mport j son

HOST = ' extrahop. exanpl e. coni

ExtraHop 8.1 ExtraHop REST API Guide 64



APl KEY = ' 123456789abcdef ghi j kIl mop'

headers = {' Accept': 'application/json',

"Aut hori zation': 'ExtraHop api key=%"' % API KEY}
conn = http.client. HTTPSConnect i on( HOST)
conn. request (' GET', '/api/vl/dashboards', headers=headers)
resp = conn. getresponse()
parsed _resp = json.loads(resp.read())

for dashboard in parsed_resp:

i f dashboard[' owner'] == 'nmarksmth':
print (' Dashboard {id} owned by marksnith."'
" Switching ownership...'.format(id=dashboard['id']))
config = {'owner': 'paul anderson'}

conn. request (' PATCH , '/api/vl/ dashboards/{id}"'.format(

i d=dashboard['id']), json.dunps(config), headers=headers)
resp = conn. getresponse()
resp. read()

E Note: If the script returns an error message that the SSL certificate verification failed, make sure
that a trusted certificate has been added to your ExtraHop system . Alternatively, you can
add the context option and send the request over TLSv1.2 to bypass certificate verification.
However, this method is not secure and is not recommended. The following code creates an
HTTP connection over TLSv1.2:

conn = httplib. HTTPSConnecti on( HOST,
cont ext =ssl . SSLCont ext (ssl . PROTOCOL_TLSv1_2))

Extract the device list through the REST API

The ExtraHop REST API enables you to extract the list of devices discovered by a Discover appliance. By
extracting the list with a REST API script, you can export the list in a format that can be read by third-party
applications, such as a configuration management database (CMDB). In this topic, we show methods for
extracting a list through both the cURL command and a Python script.

Before you begin

e You must log in to the ExtraHop system with an account that has full write privileges to generate an
API key.

e You must have a valid API key to retrieve devices through the REST API and complete the procedures
below. (See Generate an API key.)

Retrieve the device list with the cURL command

The device list includes all device metadata, such as MAC addresses and device IDs. However, you can
filter the list of devices with a JSON parser to extract the specific information you want to export. In this

example, the device list is retrieved and then filtered with the jq parser to only extract the display name of
each device.

Before you begin

e The cURL tool must be installed on your machine.

e The jq parser must be installed on your machine. For more information, see https://stedolan.github.io/
ja/ &

ExtraHop 8.1 ExtraHop REST API Guide 65


https://docs.extrahop.com/8.1/eh-admin-ui-guide/#ssl-certificate
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

Open a terminal application and run the following command, where YOUR _KEY is the API for your user
account, HOSTNANME is the hostname of your Discover appliance, and MAX_DEVI CES is a number large
enough to be more than the total number of devices discovered by your appliance:

curl -s -X CGET --header "Accept: application/json" --header
"Aut hori zation: ExtraHop api key=YOUR_KEY" "https://HOSTNAMVE/ api/v1/
devi ces?active fromrl&active until=0&imt=MAX DEVICES" | jq -r '.[]

| .display_nange'

E Note: If the command returns no results, make sure that a trusted certificate has been added
to your ExtraHop system . Alternatively, you can add the - - i nsecur e option to
retrieve the device list from an appliance without a trusted certificate; however, this
method is not secure and is not recommended.

Tip: You can append the sel ect (. anal ysis == "LEVEL") option to filter results by
analysis level. For example, the following command limits the results to include only
devices that are selected for advanced analysis:

curl -s -X GET --header "Accept: application/json" --header

"Aut hori zation: ExtraHop api key=YOUR KEY" "htt ps://HOSTNANVE/
api / vl/ devi ces?active from=1&active until=0& i mnm t=10000000000"

| jg-r ".[] | select(.analysis == "advanced") | .display_nane'

@ Tip: You can append the sel ect (. critical == BOOLEAN) option to filter results by the
critical field. For example, the following command limits the results to include only devices
that are identified as critical by the ExtraHop system:

curl -s -X GET --header "Accept: application/json" --header
"Aut hori zati on: ExtraHop api key=YOUR _KEY" "https://HOSTNAVE/

api /vl/ devi ces?active froml&active until =0& i m t=10000000000"
| jg -r ".[] | select(.critical == true) | .display_nane'

Python script example

The following example Python script extracts the device list, including all device metadata, and writes the
list to a CSV file in the same directory as the script. The script includes the following configuration variables
that you must replace with information from your environment:

e HOST: The IP address or hostname of the Discover appliance

e APIKEY: The API key

e FILENAME: The file that output will be written to

e LIMIT: The maximum number of devices to retrieve with each GET request

e SAVEL2: Retrieves L2 parent devices. This variable is valid only if you have enabled the ExtraHop system
to discover devices by IP address.

e ADVANCED_ONLY: Retrieves only devices that are currently under advanced analysis
e CRITICAL_ONLY: Retrieves only devices that have been identified as critical by the ExtraHop system

#! [ usr/ bi n/ pyt hon3

i nport http.client
i mport json

i mport csv

i nport datetine

i mport ssli

i nport sys

HOST = ' extrahop. exanpl e. coni

ExtraHop 8.1 ExtraHop REST API Guide

66


https://docs.extrahop.com/8.1/eh-admin-ui-guide/#ssl-certificate
https://docs.extrahop.com/8.1/eh-admin-ui-guide/#ssl-certificate

APl KEY = ' 123456789abcdef ghi j kIl mop
FI LENAME = ' devi ces. csv

LIMT = 1000

SAVEL2 = Fal se

ADVANCED ONLY = Fal se

CRITI CAL_ONLY = Fal se

headers = {}
headers[' Accept'] = 'application/json
headers[' Aut hori zation'] = 'ExtraHop api key="+API KEY

def getDevices(of fset):
conn = http.client.HTTPSConnect i on( HOST)
conn. request (' GET', '/api/vl/ devices?lint=%d&offset=
%d&search_type=any' %{LI M T, of f set), header s=header s)
resp = conn. getresponse()
if resp.status == 200:
devi ces = json. |l oads(resp.read())
conn. cl ose()
return devices
el se:
print("Error retrieving Device list")
print(resp.status, resp.reason)
resp.read()
dTabl e = None
conn. cl ose()

sys.exit()
continue_search = True
offset =0
dTable = []

whi | e (continue_search):

new _devi ces = get Devi ces(of fset)

offset += LIMT

dTabl e += new _devi ces

if (len(new devices) > 0):
continue_search = True

el se:
conti nue_search = Fal se

if (dTable != None):

print (" - Saving %d devices in CSV file" %I en(dTabl e))

with open(FI LENAME, 'wW ) as csvfile:
csvwriter = csv.witer(csvfile,dialect="excel")
csvwiter.witerow(list(dTabl e[0].keys()))
w =0
s =0
for d in dTabl e:

i f ADVANCED ONLY == Fal se or (ADVANCED ONLY == True and

d[ ' anal ysis'] == 'advanced'):
if CRITICAL_ONLY == Fal se or (CRITICAL_ONLY == True and
dl'critical'] == True):
if d['is_13"] | SAVEL2:
w+= 1

d'nmod_tine'] =
datetine.datetinme.frontinestanp(d[' nod_tine']/1000.0)
d['user _nod tine'] =
datetine.datetinme.frontinmestanp(d['user_nod_tine']/1000.0)
d[ ' di scover _tine'] =
datetine.datetinme.frontinestanp(d['di scover _tinme']/1000.0)
csvwiter.witerow(list(d.values()))
el se:
s += 1
el se:

ExtraHop 8.1 ExtraHop REST API Guide 67



s += 1

el se:
s += 1
print(" - Wote % devices, skipped %l devices " % (w,S))

E Note: If the script returns an error message that the SSL certificate verification failed, make sure
that a trusted certificate has been added to your ExtraHop system . Alternatively, you can
add the context option and send the request over TLSv1.2 to bypass certificate verification.
However, this method is not secure and is not recommended. The following code creates an
HTTP connection over TLSv1.2:

conn = httplib. HTTPSConnect i on( HOST,
cont ext =ssl . SSLCont ext (ssl . PROTOCOL_TLSv1 2))

Create a trusted SSL certificate through the REST API

By default, ExtraHop appliances include a self-signed SSL certificate. However, you can improve security
for your appliance by adding a trusted certificate signed by a certification authority (CA). You can create the
certificate signing request to send to your CA through the ExtraHop REST API. After you receive the signed
certificate, you can also add it to your ExtraHop system through the REST API.

Before you begin

You must log in to the ExtraHop system with an account that has unlimited privileges &= to generate an
API key.

You must have a valid APl key to make changes through the REST API and complete the procedures
below. (See Generate an API key.)

Familiarize yourself with the ExtraHop REST API Guide to learn how to navigate the ExtraHop REST
API Explorer.

E Note: You can also perform the procedures in this topic through the ExtraHop Admin Ul. For more
information, see the following topics:

o Create a certificate signing request from your ExtraHop system &
e  SSL Certificate =

Create an SSL certificate signing request
To create a signed SSL certificate, you must send a certificate signing request to a trusted CA.

1.

vk own

In a browser, navigate to the REST API Explorer.

The URL is the hostname or IP address of your ExtraHop Discover or Command appliance, followed by
[ api / v1/ expl or e/ . For example, if your hostname is seattle-eda, the URLisht t ps://seattl e-
eda/ api / vl/ expl ore/.

Click Enter API Key and then paste or type your APl key into the API Key field.
Click Authorize and then click Close.
Click ExtraHop and then click POST/extrahop/sslcert/signingrequest.

Click Try it out.

The JSON schema is automatically added to the SSL Certificate Signing Request Parameters parameter
text box.

In the SSL Certificate Signing Request Parameters parameter text box, specify the certificate signing
request fields.

a) Inthe common_nane field, replace st r i ng with the fully qualified domain name of your ExtraHop
system.

b) Inthesubject _alternative nanes field, add one or more alternative domain names or IP
addresses for your appliance.

ExtraHop 8.1 ExtraHop REST API Guide 68


https://docs.extrahop.com/8.1/eh-admin-ui-guide/#ssl-certificate
https://docs.extrahop.com/8.1/users-overview/#user-privileges
https://docs.extrahop.com/8.1/certificate-signing-request
https://docs.extrahop.com/8.1/eh-admin-ui-guide/#ssl-certificate

E Note: The subj ect al t ernati ve_nanes field is required. If your appliance has only
one domain name, duplicate the value from the conmon_nane field. You must
include at least one subject alternative name with the type set to dns, but additional
alternative names can have the type set toi p or dns.

c) (Optional) Inthe emai | _addr ess field, replace st ri ng with the email address of the certificate
owner.

d) (Optional) In the or gani zat i on_nane field, replace st r i ng with the registered legal name of
your organization.

e) (Optional) Inthe count ry_code field, replace st ri ng with the 2-character ISO country code of
the country that your organization is located in.

f) (Optional) In the st at e_or _pr ovi nce_nane field, replace st r i ng with the name of the state or
that your organization is located in.

g) (Optional)Inthel ocal i ty_nane field, replace st r i ng with the name of the city that your
organization is located in.

h) (Optional) In the or gani zat i onal _uni t _nane field, replace st r i ng with the name of your
department within your organization.

The Value section should look similar to the following example:

"subject": {

"conmon_nane": "exanpl e. cont,
"emai | _address”: "adm n@xanpl e. cont,
"organi zati on_nane": "Exanple",
"country_code": "US"
e
"subj ect _alternative_names": [
"nane": "ww. exanpl e. cont,
Iltypell: Ildnsll

]
}

7. Click Send Request to create the signing request.
In the Server response section, the Response body displays the signing request in the pemfield.

Next steps
Send the signing request to your CA to create your signed SSL certificate.

@ Important: The signing request contains escape sequences that represent line breaks (\n). Replace
each instance of \n with a line break before sending the request to your CA. You can
modify the PEM request manually in a text editor or automatically through a JSON
parsing utility, as shown in the following example command:

echo '<json_output>" | python -c 'inport sys, json; print
json. |l oad(sys.stdin)["pem]"'

Replace the <j son_out put > variable with the entire JSON string returned in the
Response Body section.

Add a trusted SSL certificate to your ExtraHop system
You can add an SSL certificate signed by a trusted CA to your ExtraHop system through the REST API
Explorer.
1. In a browser, navigate to the REST API Explorer.

The URL is the hostname or IP address of your ExtraHop Discover or Command appliance, followed by
[ api / v1/ expl or e/ . For example, if your hostname is seattle-eda, the URLishtt ps: //seattl e-
eda/ api /vl/ expl ore/.

ExtraHop 8.1 ExtraHop REST API Guide 69



Click Enter API Key and then paste or type your APl key into the API Key field.
Click Authorize and then click Close.

Click ExtraHop and then click PUT/extrahop/sslcert.

Click Try it out.

In the Certificate and Key field, paste the SSL certificate.

The certificate should look similar to the following text:

ok D

----- BEA N CERTI FI CATE- - - - -

a008zvV4AM Dh\WK4e0VyvCGAIx+9d4AqQB4Czy/ P7236CHe2Y7PPdVSeWHNCQoJ0g
CnAA2u2VIYKNFYRQej | Jv8CxGVIKsdf VOi POWhCvpZXkaBOY! r DvESxn010WPUl s
6qe3nTXsUK87i ++mYuVDALUOAS YVXRO2 OOW W 7P+MCU/ cR/ op3Jpekng2cxN4qgD
FqCGbt RpLdCuJ/ xGAL1FFRHBg76+TbhO+pxgZhi Ct HYXf MKI aoPmDws AgEt Lbi zz1W
nbM g9hs4QNcJ+aMNSnTZpkbeBR4a2nk GnQoYvnFOXV/ nWevf Hrl 4ydSHI9g4l 8qt
4Ar gFepl nvni7On07FYAKL6MId1i +7i e09Aqckl t VzzKFzkakHrD4214wt sYrl €94
4Hgl J7p7NHSmaxXxt t XMz HFI Ar bnj HACI Ogl v8l Au+l vLJI8ai GAb3zqveNz6ZAZ5j
PGAUs P+dVYV/ 8Vj vaghki P/ 1j W UHwz pdl Hbc DBqOkAF41f nbv+2EXqFJ096JSSi U
r geJpgNuH3Lbk TOKORAI LoGLMZKEKXF+30pLVD70x7NCGh9pMiZI B8t c TbTrsvD8T
3L2t W\WZssqYOANci dt d17t 72VWihz QURT1ne5t G pN6od/ q6B+FI vRq/ 7VgOUEL
C2AG onbUN Vj 3pyj Xzq/ B1l WUSOTi cRcKdl 5w KEKPUG K4AwW1R/ 87bj 5HSn8nyd
| MCcQpLTokH 0B5+80Lyl NnVXNPI j 3eYOn60Q0OdCl BqTDMWD/ 4sB3XgeC/ pj pl eU3
3uot +wM GoN Dgb1LPt 3BNpUQUCz Sf niGSSOXi WELsEhz 3i x/ 36a9eUW f hnt Ps\W\b
dne5Lf +G7cf +ebsRTb7R89GgKz TpUl 1KAzKI NAebk T6W WAV j ugpAOBcf ANj S60
m k4ZbY8d54Ut Al7evprr 2+8Uot | gVI r Cbf LgA2DYB8QOTCBYI FKI3GZAedgRKISmM
| 2gdaB6@Bcz YNaVYSe Cs BdHHwWL+h7dBeqd UUWYKt nPVB6/ dj j / 6vISXh9/ UX/ 3c0
eqXG36w | qJAYu8Q AydJsVC85I zgzi kkX0f OKE315Dogi npg59yi x9dHD2sxLb1
X39BRpLkZ9nvWeke2 YHU/ VKBVI xgSs| ukGoTUI cUt PJr t MQOWCi / EQQXbPK9a2pW
K51938h6QuLj NoDTFuxf hE4z| TWHTgy As2IMNVRI+uDUI VJcl X+Cl Pj hZzj yPqnD6
6uh8Sr 3zndOvabqDgquo69r MYyvcl FOXx OQUMWgUWLRb8Y=

----- END CERTI FI CATE- - - - -

E Note: If you want the certificate to be signed with your own private key, you can include your
key after the SSL certificate, separated by a line break. However, we recommend that
you do not specify your own key; by default, the appliance will sign the certificate with
the private key on the appliance.

7. Click Send Request to add the certificate.

Create custom devices through the REST API

You can create custom devices through the REST API that track network traffic across multiple IP addresses
and ports. For example, you might want to add a custom device for each branch office. If you create the
devices through a script, you can read the list of devices from a CSV file. In this topic, we will demonstrate
methods for both the REST APl and the ExtraHop REST API Explorer.

Before you begin

e  You must log in to the ExtraHop system with an account that has unlimited privileges to generate an
API key.

e You must have a valid API key to make changes through the REST APl and complete the procedures
below. (See Generate an APl key.)

e Familiarize yourself with the ExtraHop REST API Guide to learn how to navigate the ExtraHop REST
API Explorer.

Create a custom device

You can create a custom device and associate the custom device with a list of IP addresses or CIDR blocks
through the POST /customdevices operation.

1. Inthe REST API Explorer, click Custom Device, and then click POST /customdevices.

ExtraHop 8.1 ExtraHop REST API Guide 70



2. Inthe body field, specify properties for the custom device that you want to create.

For example, the following body matches the custom device to the CIDR blocks 192.168.0.0/26,
192.168.0.64/27,192.168.0.96/30, and 192.168.0.100/32:

"description": "The |ocation of our office in Washi ngton",
"nanme": "Seattle",
“criteria": [

{

“ipaddr": "192.168. 0.0/ 26"

"ipaddr": "192.168.0.64/27"

“ipaddr": "192.168.0.96/ 30"

"ipaddr": "192.168.0.100/ 32"

Python script example

This example python script creates custom devices by reading criteria from a CSV file. Each row of the CSV
file must contain the following columns in the specified order:

Name ID Description IP address or CIDR block

E Note: The script does not accept a header row in the CSV file. There is no limit to the number of
columns in the table; each column after the first four specifies an additional IP address for
the device. The first four columns are required for each row.

For example, the following CSV list contains criteria for offices in France, Holland, and California:

France, francehq, The | ocati on of our office in

France, 192. 168. 0. 103, 192. 168. 0. 105, 192. 168. 0. 101
Hol | and, hol | andhq, The | ocati on of our office in Holland, 192. 168. 0. 102
Cal i forni a, californiahqg, The | ocation of our office in

Cal i fornia, 192. 168. 0. 104, 192. 168. 0. 103

The script includes the following configuration variables that you must replace with information from your
environment:

e HOST: The IP address or hostname of the Discover appliance

e APIKEY: The API key

e CSV_FILE: The path of the CSV file relative to the location of the script file

#! / usr/ bi n/ pyt hon3

i nport json

i nport http.client
i mport csv

i mport os.path

HOST = ' extrahop. exanpl e. coni

APl KEY = ' 123456789abcdef ghi j kl rop'
CSV_FILE = "device list.csv'

ExtraHop 8.1 ExtraHop REST API Guide

71



headers = {' Content-Type': 'application/json',
"Accept': 'application/json',
"Aut horization': 'ExtraHop api key=%"' % API KEY}

def readCsV():
devices = []
with open(CSV_FILE, 'rt', encoding="ascii') as f:
reader = csv.reader(f)
for rowin reader:
device = {}
ips =[]
devi ce[ ' name'] = row. pop(0)
devi ce[ ' extrahop_id'] = row pop(0)
devi ce[ ' description'] = row. pop(0)
for ipin row
i ps. append({"i paddr": ip})
device['criteria'] = ips
devi ces. append(devi ce)
return devices

def createDevice(device):
conn = http.client. HTTPSConnect i on( HOST)
conn. request (' POST', '/api/vl/ custondevi ces', body=json. dunps(device),
header s=header s)
resp = conn. getresponse()
if resp.status != 201:
print ("Could not create device: " + device['nane'])
print (" " + json.loads(resp.read())[' error_nessage'])
el se:
print ("Created custom device: + devi ce[' nane'])
devi ce_id = os. pat h. basenane(resp. get header ('l ocation'))

devi ces = readCsV()
for device in devices:
creat eDevi ce(devi ce)

E Note: If the script returns an error message that the SSL certificate verification failed, make sure
that a trusted certificate has been added to your ExtraHop system . Alternatively, you can
add the context option and send the request over TLSv1.2 to bypass certificate verification.
However, this method is not secure and is not recommended. The following code creates an
HTTP connection over TLSv1.2:

conn = httplib. HTTPSConnecti on( HOST,
cont ext =ssl . SSLCont ext (ssl . PROTOCOL_TLSv1 2))

Create and assign a device tag through the REST API

The following Python script creates a device tag and then assigns that tag to all of the devices in a specified
subnet.

#!/usr/ bi n/ env pyt hon

import httplib

inmport urllib

i nport json

i mport sys

# Configuration Options:

host = "{HOST}"
api key = "{API KEY}"

ExtraHop 8.1 ExtraHop REST API Guide 72


https://docs.extrahop.com/8.1/eh-admin-ui-guide/#ssl-certificate

tag_nane = "MTest Tag"
subnet = "10.20.0.[0-9]+"
batch limt = 100
headers = {' Accept': '"application/json'
"Aut hori zation': "ExtraHop api key=%" % api key}

conn = httplib. HTTPSConnecti on( host)

def execute req(nethod, path, expected code, failure nessage, body=None):

Returns the body of a successful request,
otherwi se prints error and term nates

conn. request (et hod, "/api/v1l" + path, headers=headers, body=body)
resp = conn. getresponse()
if resp.status is not expected code:
print(failure_nessage)
print(resp.read())
sys.exit (1)
return resp

def execute get(path, expected code, failure nessage):
resp = execute_req("CGET", path, expected_code, failure_nessage)
return json.l oads(resp.read())

def execute create(path, body, expected code, failure nessage):
"""Returns ID of newy created resource"""
resp = execute req("POST", path, expected code, failure nessage, body)
resp.read() # drain the response
return int(resp. getheader("location").split("/")[-1])

# First, search for the specified tag, by nane
resp = execute get("/tags", 200, "Unable to retrieve tags from ExtraHop")
tags = [tag for tag in resp if tag["name"] == tag_nane]

i f not tags:

# tag is not found, create it

body = json. dunps({"nane": tag nane})

tag_id = execute create('/tags', body, 201, "Unable to create tag")
el se:

tag id = tags[O]["id"]

query params = {'limt': batch_limt,
‘search_type': 'ip address'
‘val ue': subnet}

query string = urllib.urlencode(query_ parans)

# Pagi nate device results, building up a list of all devices to assign
device_ids =[]
offset =0

whi | e True:
path = "/devices?" + query_string + ("&offset=%" % offset)
resp = execute_get(path, 200, "Unable to retrieve devices")
if not resp:
br eak

device ids += [device["id"] for device in resp]
of fset += batch limt

# Performthe assignments

resp = execute_req("POST", "/tags/%l/ devices" %tag_id,
204, "Unable to perform assi gnnents",
body=j son. dunps({"assign": device_ids}))

resp.read() # drain the response

ExtraHop 8.1 ExtraHop REST API Guide 73



# Check that assignnents were successfu
resp = execute get("/tags/%l/ devices" %tag_id,

200, "Unable to retrieve tag assi gnnments")
assigned_device ids = [device["id"] for device in resp]

successful = set(device_ ids).issubset(set(assigned device_ ids))
i f successful

print ("% devices assigned to tag" % | en(device_ ids))
el se:

print("Unable to assign all devices to tag")

Query for metrics about a specific device through the REST API

The following Python script queries for metrics from an HTTP client device with the ID 9363 and prints the
response.

inport httplib

headers = {' Content-Type': 'application/json',

"Accept': 'application/json',
"Aut hori zation': 'ExtraHop api key={ APl KEY}'
body = r"""{
"cycle": "auto",
"fron: -1800000,
"until": O,
"metric_category": "http_client",
"metric_specs": |
{
"name": "req"
}
I _
"object _ids": [
9363
"obj ect _type": "device"

conn = httplib. HTTPSConnecti on(' { HOST}")

conn. request (' POST', '/api/vl/netrics', headers=headers, body=body)
resp = conn. getresponse()

print resp.status, resp.reason

print resp.read()

The following response shows entries for the device with ID 9363:

{
"date": "Thu, 19 Nov 2015 23:20: 07 GMVI",

"via": "1.1 local host",
"server": "Apache",
"vary": "Accept-Encodi ng",
"content-type": "application/json; charset=utf-8",
"cache-control": "private, max-age=0",
"connection": "Keep-Alive",
"cont ent - encodi ng": "gzip",
"keep-alive": "tineout=45, nmax=44",
"content-length": "277"

}

{

"stats": [

ExtraHop 8.1 ExtraHop REST API Guide 74



"oid": 9363,

"time": 1447973460000,
"duration": 30000,
"val ues": |

2
]
Iz
{
"oi d": 9363,
"tinme": 1447973490000,
"duration": 30000,
"val ues": |
0
]
1
{
"oid": 9363,
"tinme": 1447973520000,
"duration": 30000,
"val ues": |
1
]
e
{
"oid": 9363,

"tinme": 1447973550000,
"duration": 30000,
"val ues": |
2
]
}

Create, retrieve, and delete an object through the REST API

This example shows how you can create and successfully retrieve information about a device tag. Then,
after the device tags are deleted, the example shows how an attempt to retrieve information subsequently
fails.

The following example shows how to create a device tag called my_test_tag.

curl -i -X POST --header "Content-Type: application/json" \
--header "Accept: application/json" \

--header "Authorization: ExtraHop api key={ APl KEY}" \

- d II{

\"nane\": \"ny test tag\"

1" "https://{HOST}/ api/vl/tags"

A 201 status returns upon success with the following response headers, which display that the tag was
created, and provides the device tag location and ID of /api/v1/tags/1.

{
"date": "Wed, 18 Nov 2015 20:24:13 GVI",
"via": "1.1 | ocal host",
"server": "Apache",
"content-type": "text/plain; charset=utf-8",
"l ocation": "/api/vl/tags/1l",
"cache-control": "private, nmax-age=0",
"connection": "Keep-Alive",
"keep-alive": "tineout=45, nmax=88"
"content-length": "O"

ExtraHop 8.1 ExtraHop REST API Guide 75



}

Next, the ID (1) is added to the following GET request, which returns a 200 status upon success and the
JSON representation of the retrieved tag:

curl -i -X GET --header "Accept: application/json" \
--header "Authorization: ExtraHop api key={ APl KEY}" \
"https://{HOST}/ api/vl/tags/ 1"

{

"mod_tinme": 1447878253953,
“id'r 1,
"name": "my_test_tag"

}

Next, the following example shows a DELETE request to remove the device tag from the system, which
returns a 204 status upon success:

curl -i -X DELETE --header "Accept: application/json” \
--header "Authorization: ExtraHop api key={ APl KEY}" \
"https://{HOST}/api/vl/tags/ 1"

Finally, when another GET request is sent for that deleted device tag, the operation fails, and a 404 status is
returned upon failure, indicating that the tag is no longer available.

curl -i -X GET --header "Accept: application/json" \
--header "Authorization: ExtraHop api key={API KEY}" \
"https://{HOST}/ api/vl/tags/ 1"

Query the record log

The following request body queries the record log to retrieve 100 HTTP records where the method is GET
and the status code is 404.

"filter": {
"operator": "and",
"rules": [

"field': "nethod",
"operand": "GET",

"operator": "="
e
{ _
"field"': "statusCode",
"operand": "404",
"operator": "="
}
]
b
"front: -900000,
"limt": 100,
"types": [
"~http"
]
}

ExtraHop 8.1 ExtraHop REST API Guide 76



	Introduction to the ExtraHop REST API
	ExtraHop API requirements

	Access and authenticate to the ExtraHop REST API
	Privilege levels
	Manage API key access
	Generate an API key
	Configure cross-origin resource sharing (CORS)
	Set up an SSL certificate

	Learn about the REST API Explorer
	Open the REST API Explorer
	View operation information
	Identify objects on the ExtraHop system

	ExtraHop API resources
	Activity group
	Activity Map
	Alert
	Alert severity levels

	Analysis Priority
	APIKey
	Appliance
	Application
	Audit log
	Auth
	Bundle
	Cloud
	Custom device
	Customization
	Dashboards
	Device
	Operand values for device search
	Supported time units

	Device group
	Supported time units
	Operand values for device groups

	Detections
	Email group
	Exclusion intervals
	ExtraHop
	License
	Metrics
	Supported time units

	Network
	Network locality entry
	Node
	Observations
	Open Data Stream
	Packet capture
	Packet Search
	Filter packets with Berkeley Packet Filter syntax
	Add a filter with BPF syntax
	Supported BPF syntax


	Page
	Pairing
	Record Log
	Operand values in record queries
	Supported time units

	Report
	Running config
	Software
	SSL decrypt key
	Support pack
	Tag
	Threat Collection
	Trigger
	Advanced trigger options

	User
	User group
	VLAN
	Whitelist (Watchlist)

	ExtraHop REST API examples
	Upgrade ExtraHop firmware through the REST API
	Upgrade ExtraHop firmware with cURL
	Python script example
	Upgrading Explore appliances

	Change a dashboard owner through the REST API
	Retrieve the dashboard IDs
	Change the dashboard owner
	Python script example

	Extract the device list through the REST API
	Retrieve the device list with the cURL command
	Python script example

	Create a trusted SSL certificate through the REST API
	Create an SSL certificate signing request
	Add a trusted SSL certificate to your ExtraHop system

	Create custom devices through the REST API
	Create a custom device
	Python script example

	Create and assign a device tag through the REST API
	Query for metrics about a specific device through the REST API
	Create, retrieve, and delete an object through the REST API
	Query the record log


