
ExtraHop 8.1
ExtraHop REST API Guide

© 2020 ExtraHop Networks, Inc. All rights reserved.

This manual in whole or in part, may not be reproduced, translated, or reduced to any machine-readable
form without prior written approval from ExtraHop Networks, Inc.

For more documentation, see https://docs.extrahop.com/.

Published: 2020-10-29

ExtraHop Networks
Seattle, WA 98101
877-333-9872 (US)
+44 (0)203 7016850 (EMEA)
+65-31585513 (APAC)
www.extrahop.com

https://docs.extrahop.com/
www.extrahop.com

ExtraHop 8.1 ExtraHop REST API Guide 3

Contents

Introduction to the ExtraHop REST API 5
ExtraHop API requirements 5

Access and authenticate to the ExtraHop REST
API 6
Privilege levels 6
Manage API key access 8
Generate an API key 8
Configure cross-origin resource sharing (CORS) 9
Set up an SSL certificate 9

Learn about the REST API Explorer 10
Open the REST API Explorer 10
View operation information 10
Identify objects on the ExtraHop system 10

ExtraHop API resources 13
Activity group 13
Activity Map 13
Alert 14
Alert severity levels 15

Analysis Priority 16
APIKey 16
Appliance 17
Application 17
Audit log 18
Auth 18
Bundle 19
Cloud 19
Custom device 20
Customization 20
Dashboards 21
Device 21
Operand values for device search 23
Supported time units 27

Device group 28
Supported time units 30
Operand values for device groups 30

Detections 35
Email group 35
Exclusion intervals 36
ExtraHop 36
License 37
Metrics 37
Supported time units 39

Network 40
Network locality entry 41
Node 41
Observations 42

ExtraHop 8.1 ExtraHop REST API Guide 4

Open Data Stream 42
Packet capture 43
Packet Search 43
Filter packets with Berkeley Packet Filter syntax 44

Add a filter with BPF syntax 44
Supported BPF syntax 45

Page 46
Pairing 47
Record Log 47
Operand values in record queries 47
Supported time units 49

Report 50
Running config 50
Software 51
SSL decrypt key 51
Support pack 52
Tag 52
Threat Collection 52
Trigger 53
Advanced trigger options 54

User 56
User group 57
VLAN 57
Whitelist (Watchlist) 58

ExtraHop REST API examples 59
Upgrade ExtraHop firmware through the REST API 59
Upgrade ExtraHop firmware with cURL 59
Python script example 60
Upgrading Explore appliances 61

Change a dashboard owner through the REST API 62
Retrieve the dashboard IDs 62
Change the dashboard owner 63
Python script example 64

Extract the device list through the REST API 65
Retrieve the device list with the cURL command 65
Python script example 66

Create a trusted SSL certificate through the REST API 68
Create an SSL certificate signing request 68
Add a trusted SSL certificate to your ExtraHop system 69

Create custom devices through the REST API 70
Create a custom device 70
Python script example 71

Create and assign a device tag through the REST API 72
Query for metrics about a specific device through the REST API 74
Create, retrieve, and delete an object through the REST API 75
Query the record log 76

ExtraHop 8.1 ExtraHop REST API Guide 5

Introduction to the ExtraHop REST API
The ExtraHop REST API enables you to automate administration and configuration tasks on your ExtraHop
appliances. You can send requests to the ExtraHop API through a Representational State Transfer (REST)
interface, which is accessed through resource URIs and standard HTTP methods.

When a REST API request is sent over HTTPS to an ExtraHop system, that request is authenticated and
then authorized through an API key. After authentication, the request is submitted to the ExtraHop system
and the operation completes.

Each ExtraHop system provides access to the built-in ExtraHop REST API Explorer, which enables you to
view all of the available system resources, methods, properties, and parameters. The REST API Explorer also
enables you to send API calls directly to your ExtraHop system.

Note: This guide is intended for an audience that has a basic familiarity with software development
and the ExtraHop system.

ExtraHop API requirements
Before you can begin writing scripts for the ExtraHop REST API or performing operations through the REST
API Explorer, you must meet the following requirements:

• Your ExtraHop system must be configured to allow API key generation for the type of user you are
(remote or local).

• You must generate a valid API key.
• You must have a user account on the ExtraHop system with appropriate privileges set for the type of

tasks you want to perform.

ExtraHop 8.1 ExtraHop REST API Guide 6

Access and authenticate to the ExtraHop REST API
Administrators, or users with unlimited privileges, control whether users can generate API keys. For
example, you can prevent remote users from generating keys or you can disable API key generation
entirely. When this functionality is enabled, API keys are generated by users and can be viewed only by the
user who generated the key.

Note: Administrators set up user accounts and assign privileges, but then users generate their
own API keys. Users can delete API keys for their own account, and users with unlimited
privileges can delete API keys for any user. For more information, see Users and user groups

.

After you generate an API key, you must append the key to your request headers. The following example
shows a request that retrieves metadata about the firmware running on the ExtraHop appliance:

curl -i -X GET --header "Accept: application/json" \
--header "Authorization: ExtraHop apikey=2bc07e55971d4c9a88d0bb4d29ecbb29" \
"https://<hostname-or-IP-of-your-ExtraHop-appliance>/api/v1/extrahop"

Privilege levels
User privilege levels determine which ExtraHop Web UI and ExtraHop Admin UI tasks the user can perform
through the ExtraHop REST API.

You can view the privilege levels for users through the granted_roles and effective_roles
properties. The granted_roles property shows you which privilege levels are explicitly granted to the
user. The effective_roles property shows you all privilege levels for a user, including those received
outside of the granted role, such as through a user group.

The granted_roles and effective_roles properties are returned by the following operations:

• GET /users
• GET /users/{username}

The granted_roles and effective_roles properties support the following privilege levels. Note that
the type of tasks for each ExtraHop system vary by the available resources listed in the REST API Explorer.

Privilege level Actions allowed

"system": "full" • Enable or disable API key generation for the ExtraHop system.
• Generate an API key.
• View the last four digits and description for any API key on the

system.
• Delete API keys for any user.
• View and edit cross-origin resource sharing.
• Transfer ownership of any non-system dashboard to another

user.
• Perform any Admin UI task available through the REST API.
• Perform any Web UI task available through the REST API.

"write": "full" • Generate your own API key.
• View or delete your own API key.
• Change your own password, but you cannot perform any other

Admin UI tasks through the REST API.

https://docs.extrahop.com/8.1/users-overview/#users-and-user-groups
https://docs.extrahop.com/8.1/users-overview/#users-and-user-groups

ExtraHop 8.1 ExtraHop REST API Guide 7

Privilege level Actions allowed
• Perform any Web UI task available through the REST API.

"write": "limited" • Generate an API key.
• View or delete their own API key.
• Change your own password, but you cannot perform any other

Admin UI tasks through the REST API.
• Perform all GET operations through the REST API.
• Modify the sharing status of dashboards that you are allowed to

edit.
• Delete dashboards and activity maps that you own.
• Perform metric and record queries.

"write": "personal" • Generate an API key.
• View or delete your own API key.
• Change your own password, but you cannot perform any other

Admin UI tasks through the REST API.
• Perform all GET operations through the REST API.
• Delete dashboards and activity maps that you own.
• Perform metric and record queries.

"metrics": "full" • Generate an API key.
• View or delete your own API key.
• Change your own password, but you cannot perform any other

Admin UI tasks through the REST API.
• View dashboards and activity maps shared with you.
• Perform metric and record queries.

"metrics": "restricted" • Generate an API key.
• View or delete your own API key.
• Change your own password, but you cannot perform any other

Admin UI tasks through the REST API.
• View dashboards and activity maps shared with you.

"packets": "full" • View and download packets from an ExtraHop Discover appliance
through the GET/packetcaptures/{id} operation.

This is an add-on privilege that can be granted to a user with one of
the following privilege levels:

• "write": "full"
• "write": "limited"
• "write": "personal"
• "write": null
• "metrics": "full"
• "metrics": "restricted"

"packets": "full_with_keys" • View and download packets from an ExtraHop Discover appliance
through the GET/packetcaptures/{id} operation.

This is an add-on privilege that can be granted to a user with one of
the following privilege levels:

• "write": "full"

ExtraHop 8.1 ExtraHop REST API Guide 8

Privilege level Actions allowed
• "write": "limited"
• "write": "personal"
• "write": null
• "metrics": "full"
• "metrics": "restricted"

"detections": "full" • View detections in the ExtraHop system.

This is an add-on privilege that can be granted to a user with one of
the following privilege levels:

• "write": "full"
• "write": "limited"
• "write": "personal"
• "write": null
• "metrics": "full"
• "metrics": "restricted"

"detections": "none" • No access to detections.

This is an add-on privilege that can be granted to a user with one of
the following privilege levels:

• "write": "full"
• "write": "limited"
• "write": "personal"
• "write": null
• "metrics": "full"
• "metrics": "restricted"

Manage API key access
Users with unlimited privileges can configure whether users can generate API keys for the ExtraHop
system. You can allow only local users to generate keys, or you can also disable API key generation entirely.

Users must generate an API key before they can perform operations through the ExtraHop REST API. Keys
can be viewed only by the user who generated the key or system administrators with unlimited privileges.
After a user generates an API key, they must append the key to their request headers.

1. Log in to the Administration page on the ExtraHop system through https://<extrahop-
hostname-or-IP-address>/admin.

2. In the Access Settings section, click API Access.
3. In the Manage API Access section, select one of the following options:

• Allow all users to generate an API key: Local and remote users can generate API keys.
• Only local users can generate an API key: Remote users cannot generate API keys.
• No users can generate an API key: No API keys can be generated by any user.

4. Click Save Settings.

Generate an API key
You must generate an API key before you can perform operations through the ExtraHop REST API.
Keys can be viewed only by the user who generated the key or by system administrators with unlimited

ExtraHop 8.1 ExtraHop REST API Guide 9

privileges. After you generate an API key, add the key to your request headers or the ExtraHop REST API
Explorer.

Before you begin
Make sure the ExtraHop system is configured to allow API key generation.

1. In the Access Settings section, click API Access.
2. In the Generate an API Key section, type a description for the new key, and then click Generate.
3. Scroll down to the API Keys section, and copy the API key that matches your description.

You can paste the key into the REST API Explorer or append the key to a request header.

Configure cross-origin resource sharing (CORS)
Cross-origin resource sharing (CORS) allows you to access the ExtraHop REST API across domain-
boundaries and from specified web pages without requiring the request to travel through a proxy server.

You can configure one or more allowed origins or you can allow access to the ExtraHop REST API from any
origin. Only administrative users with unlimited privileges can view and edit CORS settings.

1. In the Access Settings section, click API Access.
2. In the CORS Settings section, specify one of the following access configurations.

• To add a specific URL, type an origin URL in the text box, and then click the plus (+) icon or press
ENTER.

The URL must include a scheme, such as HTTP or HTTPS, and the exact domain name. You cannot
append a path; however, you can provide a port number.

• To allow access from any URL, select the Allow API requests from any Origin checkbox.

Note: Allowing REST API access from any origin is less secure than providing a list of
explicit origins.

3. Click Save Settings and then click Done.

Set up an SSL certificate
Before making requests to an ExtraHop system with a self-signed certificate, you must set up an SSL
certificate for each user who will access the ExtraHop system from a particular computer.

In each of the following examples, replace {HOST} with the hostname of your ExtraHop system.

Note: The SSL certificate applies only to the user performing the command. Each user must run
the command with their login credentials to set up the SSL certificate.

Set up SSL through Windows PowerShell

Invoke-WebRequest "http://{HOST}/public.cer" -OutFile ($env:USERPROFILE +
"\ex.cer"); Import-Certificate ($env:USERPROFILE + "\ex.cer")
-CertStoreLocation Cert:\CurrentUser\Root

Set up SSL through OS X

curl -O http://{HOST}/public.cer; security add-trusted-cert -r trustRoot -k
~/Library/Keychains/login.keychain public.cer

ExtraHop 8.1 ExtraHop REST API Guide 10

Learn about the REST API Explorer
The REST API Explorer is a web-based tool that enables you to view detailed information about the
ExtraHop REST API resources, methods, parameters, properties, and error codes. Code samples are
available in Python, cURL, and Ruby for each resource. You also can perform operations directly through
the tool.

Open the REST API Explorer
You can open the REST API Explorer from the ExtraHop Admin UI or through the following URL:

https://<extrahop-hostname-or-ip-address>/api/v1/explore/

1. Log in to the Administration page on the ExtraHop system through https://<extrahop-
hostname-or-IP-address>/admin.

2. From the Access Setting section, click API Access.
3. On the API Access page, click REST API Explorer.

The REST API Explorer opens in your browser.

View operation information
From the REST API Explorer, you can click any operation to view configuration information for the
resource.

The following table provides information about the sections available for resources in the REST API
Explorer. Section availability varies by HTTP method. Not all methods have all of the sections listed in the
table.

Section Description

Body Parameters Provides all of the fields for the request body and
supported values for each field.

Parameters Provides information about the available query
parameters.

Responses Provides information about the possible HTTP
status codes for the resource. If you click Send
Request, this section also includes the response
from the server and the cURL, Python, and Ruby
syntax required to send the specified request.

Identify objects on the ExtraHop system
Objects on the ExtraHop system can be identified by any unique value, such as the IP address, MAC
address, name, or system ID. However, to perform API operations on a specific object, you must locate the
object ID. You can easily locate the object ID through the following methods in the REST API Explorer.

• The object ID is provided in the headers returned from a POST request. For example, if you send a
POST request to create a page, the response headers display a location URL.

ExtraHop 8.1 ExtraHop REST API Guide 11

The following request returned the location for the newly created page as /api/v1/pages/221 and
the ID for the page as 221.

{
 "date": "Wed, 25 Nov 2015 17:39:06 GMT",
 "via": "1.1 localhost",
 "server": "Apache",
 "content-type": "text/plain; charset=utf-8",
 "location": "/api/v1/pages/221",
 "cache-control": "private, max-age=0",
 "connection": "Keep-Alive",
 "keep-alive": "timeout=45, max=89",
 "content-length": "0"
}

• The object ID is provided for all objects returned from a GET request. For example, if you perform a
GET request on all devices, the response body contains information for each device, including the ID.

The following response body displays an entry for a single device, with an ID of 10212:

{
 "mod_time": 1448474346504,
 "node_id": null,
 "id": 10212,
 "extrahop_id": "test0001",
 "description": null,
 "user_mod_time": 1448474253809,
 "discover_time": 1448474250000,
 "vlanid": 0,
 "parent_id": 9352,
 "macaddr": "00:05:G3:FF:FC:28",
 "vendor": "Cisco",
 "is_l3": true,
 "ipaddr4": "10.10.10.5",
 "ipaddr6": null,
 "device_class": "node",
 "default_name": "Cisco5",
 "custom_name": null,
 "cdp_name": "",
 "dhcp_name": "",
 "netbios_name": "",
 "dns_name": "",
 "custom_type": "",
 "analysis_level": 1
},

• The object ID is provided in the URL for most objects. For example, in the ExtraHop Web UI, click on
Assets, and then Devices. Select any device and view the URL. In the following example, the URL for
the device page shows Oid=10180.

https://10.10.10.205/extrahop/#/Devices?details=true&device
Oid=10180&from=6&interval_type=HR&until=0&view=l2stats

To perform specific requests for that device, add 10180 to the id field in the REST API Explorer or to
the body parameter in your request.

The URL for dashboards displays a short_code, which appears after /Dashboard. When you add the
short_code to the REST API Explorer or to your request, you must prepend a tilde to the short code.

ExtraHop 8.1 ExtraHop REST API Guide 12

In the following example, kmC9Y is the short_code. To perform requests for this dashboard, add
~kmC9Y as the value for the short_code field.

https://10.10.10.205/extrahop/#/Dashboard/kmC9Y/?from=6&interval_
type=HR&until=0

You can also find the short_code and dashboard ID in the Dashboard Properties for any dashboard,
which can be accessed from the command menu . Some API operations, such as DELETE, require the
dashboard ID.

ExtraHop 8.1 ExtraHop REST API Guide 13

ExtraHop API resources
You can perform operations on the following resources through the ExtraHop REST API. You also can view
more detailed information about these resources, such as available HTTP methods, query parameters, and
object properties in the REST API Explorer.

Activity group
Activity groups classify devices automatically based on their protocol traffic.

You can retrieve IDs for all activity groups and then perform additional operations on a group that is
associated with a single ID. For example, activity group IDs can be added to metric queries to retrieve
metrics simultaneously for a group of devices. For more information, see Protocols and the Protocol
Metrics Reference .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /activitygroups Retrieve all activity groups from the ExtraHop
system.

GET /activitygroups/{id}/dashboards Retrieve all dashboards related to a specific activity
group.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Activity Map
An activity map is a dynamic visual representation of the L4-L7 protocol activity between devices in your
network. Create a 2D or 3D layout of device connections in real-time to learn about the traffic flow and
relationships between devices.

Here are some important considerations about activity maps:

• You can only create activity maps for devices in Standard Analysis and Advanced Analysis. Discovery
Mode devices are not included in activity maps. For more information, see Analysis levels .

• If you create an activity map for a device, activity group, or device group with no protocol activity in
the selected time interval, the map appears without any data. Change the time interval or your origin
selection and try again.

• You can create an activity map in a Command appliance to view device connections across all of your
Discover appliances. However, connected Discover appliances must be upgraded to firmware version
7.0 or later.

To learn about configuring and navigating activity maps, see Activity maps .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /activitymaps Retrieve all activity maps.

POST /activitymaps Create a new activity map.

https://docs.extrahop.com/8.1/assets-overview/#protocols
https://docs.extrahop.com/8.1/metrics-reference
https://docs.extrahop.com/8.1/metrics-reference
https://docs.extrahop.com/8.1/analysis_priorities/#compare-analysis-levels
https://docs.extrahop.com/8.1/activity-maps

ExtraHop 8.1 ExtraHop REST API Guide 14

Operation Description

POST /activitymaps/query Perform a network topology query, which returns
activity map data in flat file content.

DELETE /activitymaps/{id} Delete a specific activity map.

GET /activitymaps/{id} Retrieve a specific activity map.

PATCH /activitymaps/{id} Update a specific activity map.

POST /activitymaps/{id}/query Perform a topology query for a specific activity
map, which returns activity map data in flat file
content.

GET /activitymaps/{id}/sharing Retrieve the users and their sharing permissions for
a specific activity map.

PATCH /activitymaps/{id}/sharing Update the users and their sharing permissions for a
specific activity map.

PUT /activitymaps/{id}/sharing Replace the users and their sharing permissions for
a specific activity map.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Alert
Alerts are system notifications that are generated upon specified alert criteria. Default alerts are available in
the system, or you can create a custom alert.

Detections and threshold alerts can be set to alert you if a metric crosses the value defined in the alert
configuration. Trend alerts cannot be configured through the REST API. For more information, see Alerts .

Note: Machine learning detections require a connection to ExtraHop Cloud Services .

The following table displays all of the operations you can perform this resource:

Operation Description

GET /alerts Retrieve all alerts.

POST /alerts Create a new alert with specified values.

DELETE /alerts{id} Delete a specific alert.

GET /alerts{id} Retrieve a specific alert.

PATCH /alerts{id} Apply updates to a specific alert.

GET /alerts{id}/applications Retrieve all applications that have a specific alert
assigned.

POST /alerts{id}/applications Assign and unassign a specific alert to applications.

DELETE /alerts{id}/applications/{child-id} Unassign an application from a specific alert.

POST /alerts{id}/applications/{child-id} Assign an application to a specific alert.

GET /alerts/{id}/devicegroups Retrieve all device groups that have a specific alert
assigned.

https://docs.extrahop.com/8.1/alerts
https://docs.extrahop.com/8.1/detections-connect/#connect-to-extrahop-cloud-services

ExtraHop 8.1 ExtraHop REST API Guide 15

Operation Description

POST /alerts/{id}/devicegroups Assign and unassign a specific alert to device
groups.

DELETE /alerts/{id}/devicegroups/{child-id} Unassign a device group from a specific alert.

POST /alerts/{id}/devicegroups/{child-id} Assign a device group to a specific alert.

GET /alerts/{id}/devices Retrieve all devices that have a specific alert
assigned.

POST /alerts/{id}/devices Assign and unassign a specific alert to devices.

DELETE /alerts/{id}/devices/{child-id} Unassign a device from a specific alert.

POST /alerts/{id}/devices/{child-id} Assign a device to a specific alert.

GET /alerts/{id}/emailgroups Retrieve all email groups that have a specific alert
assigned.

POST /alerts/{id}/emailgroups Assign and unassign a specific alert to email groups.

DELETE /alerts/{id}/emailgroups/{child-id} Unassign a email group from a specific alert.

POST /alerts/{id}/emailgroups/{child-id} Assign a email group to a specific alert.

GET /alerts/{id}/exclusionintervals Retrieve all exclustion intervals that have a specific
alert assigned.

POST /alerts/{id}/exclusionintervals Assign and unassign a specific alert to exclustion
intervals.

DELETE /alerts/{id}/exclusionintervals/{child-id} Unassign an exclusion interval from a specific alert.

POST /alerts/{id}/exclusionintervals/{child-id} Assign an exclusion interval to a specific alert.

GET /alerts/{id}/networks Retrieve all networks that have a specific alert
assigned.

POST /alerts/{id}/networks Assign and unassign a specific alert to networks.

DELETE /alerts/{id}/networks/{child-id} Unassign a network from a specific alert.

POST /alerts/{id}/networks/{child-id} Assign a network to a specific alert.

GET /alerts/{id}/stats Retrieve all additional statistics for a specific alert.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Alert severity levels
The severity level you specify for an alert is displayed on the Alerts page, email notifications, and SNMP
traps.

The following severity levels are supported. Severity levels 0-2 require immediate attention.

Value Name Description

0 Emergency System functionality is
unavailable.

1 Alert Immediate action is required.

ExtraHop 8.1 ExtraHop REST API Guide 16

Value Name Description

2 Critical Critical conditions are occurring.

3 Error Error conditions are occurring.

4 Warning Warning conditions are occurring.

5 Notice Normal operations are occurring
with significant conditions, such
as a restart.

6 Info Normal operations are occurring
with process updates.

7 Debug Debug-level messages are
available.

Analysis Priority
The ExtraHop system analyzes and classifies traffic for every device it discovers. Your license reserves
capacity for the ExtraHop system to collect metrics for critical assets. This capacity is associated with two
analysis levels: Advanced Analysis and Standard Analysis.

You can specify which devices receive Advanced Analysis and Standard Analysis levels by configuring
analysis priority rules . Analysis priorities help inform the ExtraHop system about which devices are
important in your environment. A third analysis level, Discovery Mode, is available for devices that are not
in Advanced or Standard Analysis.

Note: By default, a Discover appliance manages its own analysis priorities for devices that it
discovers. If the Discover appliance is connected to a Command appliance, you can transfer
priority management to that Command appliance, which can help save time in a large
deployment.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /analysispriority/config/{appliance_id} Retrieve the analysis priority rules for a specific
Discover appliance.

PUT /analysispriority/config/{appliance_id} Replace the analysis priority rules for a specific
Discover appliance.

GET /analysispriority/{appliance_id}/manager Retrieve the appliance that manages analysis
priority rules for a specific Discover appliance.

PATCH /analysispriority/{appliance_id}/manager Update which appliance manages analysis priority
rules for a specific Discover appliance.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

APIKey
An API key enables a user to perform operations through the ExtraHop REST API.

You can generate the initial API key for the setup user account through the REST API. All other API keys are
generated through the API Access page in the ExtraHop Admin UI.

https://docs.extrahop.com/8.1/analysis_priorities/#prioritizing-devices-and-groups

ExtraHop 8.1 ExtraHop REST API Guide 17

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /apikeys Retrieve all API keys.

POST /apikeys Create the initial API key for the setup user account.

GET /apikeys/{keyid} Retrieve information about a specific API key.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Appliance
The ExtraHop system consists of a network of connected appliances that perform tasks such as monitoring
traffic, analyzing data, storing data, and identifying detections.

You can retrieve information about ExtraHop appliances connected to the local appliance and establish new
connections to remote ExtraHop appliances.

Note: You can only establish a connection to a remote ExtraHop appliance that is licensed for the
same edition as the local ExtraHop appliance.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /appliances Retrieve all remote ExtraHop appliances connected
to the local appliance.

POST /appliances Establish a new connection to a remote ExtraHop
appliance.

GET /appliances/{id} Retrieve a specific remote ExtraHop appliance
connected to the local appliance.

GET /appliances/{id}/productkey Retrieve the product key of the specified appliance.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Application
Applications are user-defined groups that collect metrics identified through triggers across multiple types of
traffic. The default All Activity application contains all collected metrics.

The following table displays all of the operations you can perform on the application resource:

Operation Description

GET /applications Retrieve all applications that were active within a
specific timeframe.

POST /applications Create a new application.

GET /applications/{id} Retreive a specific application.

PATCH /applications/{id} Update a specific application.

ExtraHop 8.1 ExtraHop REST API Guide 18

Operation Description

GET /applications/{id}/activity Retrieve all activity for a specific application.

GET /applications/{id}/alerts Retrieve all alerts that are assigned to a specific
application.

POST /applications/{id}/alerts Assign and unassign alerts to a specific application.

DELETE /applications/{id}/alerts/{child-id} Unassign an alert from a specific application.

POST /applications/{id}/alerts/{child-id} Assign an alert to a specific application.

GET /applications/{id}/dashboards Retrieve all dashboards related to a specific
application.

GET /applications/{id}/pages Retrieve all pages that are assigned to a specific
application.

POST /applications/{id}/pages Assign and unassign pages to a specific application.

DELETE /applications/{id}/pages/{child-id} Unassign a page from a specific application.

POST /applications/{id}/pages/{child-id} Assign a page to a specific application.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Audit log
The audit log displays a record of all recorded system administration and configuration activity, such as
the time of the activity, the user who performed the activity, the operation, operation details, and system
component..

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /auditlog Retrieve all audit log messages.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Auth
You can configure secure, single sign-on (SSO) authentication to the Command and Discover appliances
through one or more security assertion markup language (SAML) identity providers.

When a user logs in to an ExtraHop system that is configured as a service provider (SP) for SAML SSO
authentication, the ExtraHop appliance requests authorization from the appropriate identity provider (IdP).
The identity provider authenticates the user’s credentials and then returns the authorization for the user to
the ExtraHop appliance. The user is then able to access the ExtraHop system.

Operation Description

GET /auth/identityproviders Retrieve all identity providers.

POST /auth/identityproviders Add an identity provider for remote authentication.

ExtraHop 8.1 ExtraHop REST API Guide 19

Operation Description

DELETE /auth/identityproviders/{id} Delete a specific identity provider.

GET /auth/identityproviders/{id} Retrieve a specific identity provider.

PATCH /auth/identityproviders/{id} Update an existing identity provider.

GET /auth/identityproviders/{id}/privileges Retrieve the privilege settings for a specific identity
provider.

PATCH /auth/identityproviders/{id}/privileges Update the privilege settings for a specific identity
provider.

GET /auth/samlsp Retrieve SAML security provider (SP) metadata for
this appliance.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Bundle
Bundles are JSON-formatted documents that contain information about selected system configuration,
such as triggers, dashboards, applications, or alerts.

You can create a bundle and then transfer those configurations to another ExtraHop system, or save
the bundle as a backup. Bundles can also be downloaded from ExtraHop Solution Bundles and applied
through the REST API. For more information, see Bundles .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /bundles Retrieve metadata about all bundles on the
ExtraHop system.

POST /bundles Upload a new bundle to the ExtraHop system.

DELETE /bundles/{id} Delete a specific bundle.

GET /bundles/{id} Retrieve a specific bundle export.

POST /bundles/{id}/apply Apply a saved bundle to the ExtraHop system.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Cloud
This resource enables you to connect your on-premises Discover appliance to Reveal(x) 360 Cloud Control
Plane. For more information about configuring Reveal(x) 360, see Connect to Reveal(x) 360 from self-
managed sensors .

The following table displays all of the operations you can perform on this resource:

https://www.extrahop.com/community/bundles/
https://docs.extrahop.com/8.1/bundles
https://docs.extrahop.com/8.1/configure-ccp
https://docs.extrahop.com/8.1/configure-ccp

ExtraHop 8.1 ExtraHop REST API Guide 20

Operation Description

POST /cloud/connect Connect the ExtraHop Discover appliance to
Reveal(x) 360 Cloud Control Plane.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Custom device
You can create a custom device by defining a set of rules.

For example, you can create a custom device that has an IP address on a specified VLAN. By default, all IP
addresses outside of the locally-monitored broadcast domains are aggregated behind a router. To identify
devices that are behind that router, you can create a custom device, and then collect metrics from the
device. For more information, see Create custom devices through the REST API.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /customdevices Retrieve all custom devices.

POST /customdevices Create a custom device.

DELETE /customdevices/{id} Delete a specific custom device.

GET /customdevices/{id} Retrieve a specific custom device.

PATCH /customdevices/{id} Update a specific custom device.

GET /customdevices/{id}/criteria Retrieve all criteria fro the specific custom device.

POST /customdevices/{id}/criteria Create a new criterion for a specific custom device.

DELETE /customdevices/{id}/criteria/{child-id} Delete a criterion for a specific custom device.

GET /customdevices/{id}/criteria/{child-id} Retrieve a single custom device criterion.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Customization
The Customization resource enables you to manage backups files on the ExtraHop Discover or Command
appliance. You must have unlimited privileges to perform operations on this resource.

Backup files contain both customizations and systems resources. Customizations are user-defined objects,
such as alerts, dashboards, triggers, and custom metrics. System resources are items such as bundles,
local users and groups, and the appliance SSL certificate. For more information, see Back up and restore a
Discover or Command appliance .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /customizations Retrieve all backup files.

POST /customizations Create a backup file.

https://docs.extrahop.com/8.1/eh-admin-ui-guide/#back-up-and-restore-a-discover-or-command-appliance
https://docs.extrahop.com/8.1/eh-admin-ui-guide/#back-up-and-restore-a-discover-or-command-appliance

ExtraHop 8.1 ExtraHop REST API Guide 21

Operation Description

GET /customizations/status Retrieve status details for the most recent backup
attempt.

DELETE /customizations/{id} Delete a specific backup file.

GET /customizations/{id} Retrieve a specific backup file.

POST /customizations/{id}/apply Restore only customizations from a specific backup
file.

POST /customizations/{id}/download Download a specific backup file.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Dashboards
Dashboards are built-in or customized views of your ExtraHop metrics information. For more information,
see Dashboards .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /dashboards Retrieve all dashboards.

DELETE /dashboards/{id} Delete a specific dashboard.

GET /dashboards/{id} Retrieve a specific dashboard.

PATCH /dashboards/{id} Update ownership of a specific dashboard.

GET /dashboards/{id}/reports Retrieve scheduled reports that contain a specific
dashboard.

Important: This operation is only available from
an ExtraHop Command appliance.

GET /dashboards/{id}/sharing Retrieve the users and their sharing permissions for
a specific dashboard.

PATCH /dashboards/{id}/sharing Update the users and their sharing permissions for a
specific dashboard.

PUT /dashboards/{id}/sharing Replace the users and their sharing permissions for
a specific dashboard.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Device
Devices are objects on your network that have been identified and classified by your ExtraHop appliance.
For more information, see Devices .

The following table displays all of the operations you can perform on this resource:

https://docs.extrahop.com/8.1/dashboards
https://docs.extrahop.com/8.1/devices-overview

ExtraHop 8.1 ExtraHop REST API Guide 22

Operation Description

GET /devices Retrieve all devices that were active within a
specific time period. For more information, see
Extract the device list through the REST API.

Note: A device is considered inactive after
five minutes of not sending or receiving
packets. However, if a device resumes
sending or receiving packets after a period
of inactivity shorter than five days, the
device is considered to have been active
continuously, including during the period of
inactivity.

POST /devices/search Retrieve all devices that match specific criteria. For
more information, see Search for a device through
the REST API .

Note: A device is considered inactive after
five minutes of not sending or receiving
packets. However, if a device resumes
sending or receiving packets after a period
of inactivity shorter than five days, the
device is considered to have been active
continuously, including during the period of
inactivity.

GET /devices/{id} Retrieve a specific device.

PATCH /devices/{id} Update a specific device.

GET /devices/{id}/activity Retrieve all activity for a device.

GET /devices/{id}/alerts Retrieve all alerts that are assigned to a specific
device.

POST /devices/{id}/alerts Assign and unassign a specific device to alerts.

DELETE /devices/{id}/alerts/{child-id} Unassign an alert from a specific device.

POST /devices/{id}/alerts/{child-id} Assign an alert to a specific device.

GET /devices/{id}/dashboards Retrieve all dashboards related to a specific device.

GET /devices/{id}/devicegroups Retrieve all device groups that are assigned to a
specific device.

POST /devices/{id}/devicegroups Assign and unassign a specific device to device
groups.

DELETE /devices/{id}/devicegroups/{child-id} Unassign a device group from a specific device.

POST /devices/{id}/devicegroups/{child-id} Assign a device group to a specific device.

GET /devices/{id}/ipaddrs Retrieve all IP addresses that were associated with a
specific device within a given time period.

GET /devices/{id}/software Retrieve a list of software running on the specified
device.

GET /devices/{id}/tags Retrieve all tags that are assigned to a specific
device.

https://docs.extrahop.com/8.1/rest-search-for-device
https://docs.extrahop.com/8.1/rest-search-for-device

ExtraHop 8.1 ExtraHop REST API Guide 23

Operation Description

POST /devices/{id}/tags Assign and unassign a specific device to tags.

DELETE /devices/{id}/tags/{child-id} Unassign a tag from a specific device.

POST /devices/{id}/tags/{child-id} Assign a tag to a specific device.

GET /devices/{id}/triggers Retrieve all triggers that are assigned to a specific
device.

POST /devices/{id}/triggers Assign and unassign a specific device to triggers.

DELETE /devices/{id}/triggers/{child-id} Unassign a trigger from a specific device.

POST /devices/{id}/triggers/{child-id} Assign a trigger to a specific device.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Operand values for device search
The POST /devices/search operation enables you to search for devices by criteria specified in filter objects.
Each object should contain a unique value for the operand field that is valid for the specified field value.

activity

To search by metric activity, specify the field value as activity and the operand value as a
metric_category. You can find metric_category values in the REST API Parameters section of the
Metric Catalog.

The following example returns results for devices that match all metric activity classified for a DHCP client,
such as the number of DHCP requests sent.

{
 "filter": {
 "field": "activity",
 "operand": "dhcp_client",
 "operator": "="
 }
}

Tip: Programmatically retrieve a list of all metric activity for a device through the GET /devices/
{id}/activity operation. The stat_name value matches the metric_category value in
the metric_catalog, after the final dot.

ExtraHop 8.1 ExtraHop REST API Guide 24

In the following example response, the stat_name value is extrahop.device.dhcp_client. Remove
the text before the final dot to identify the metric_catalog value of dhcp_client.

{
 "id": 198606,
 "from_time": 1581537120000,
 "until_time": 1581542520000,
 "mod_time": 1581542533963,
 "device_id": 30096,
 "stat_name": "extrahop.device.dhcp_client"
}

discover_time

To search by a time range, specify the field value as discover_time and an operand value with from
and until parameters, where the values are dates, expressed in milliseconds since the epoch.

The following example returns results for all device activity that occurred between 1:00 PM to 3:00 PM on
August 21, 2019.

{
 "filter": {
 "field": "discover_time",
 "operand": {
 "from": "1566392400000",
 "until": "1566399600000"
 },
 "operator": "="
 }
}

discovery_id

To search by the unique ID for the device, specify the field value as discovery_id and the operand
value as the discovery ID.

{
 "filter": {
 "field": "discovery_id",
 "operand": "c12vf90qpg290000",
 "operator": "="
 }
}

ipaddr

To search by IP address, specify the field value as ipaddr and the operand value as an IP address or
CIDR block.

{
 "filter": {
 "field": "ipaddr",
 "operand": "192.168.12.0/28",
 "operator": "="
 }
}

ExtraHop 8.1 ExtraHop REST API Guide 25

node

To search by the unique ID of a Discover appliance, specify the field value as node and the operand
value as the appliance UUID.

{
 "filter": {
 "field": "node",
 "operand": "qqvsplfa-zxsk-32l0-19g1-076vfr42pw31",
 "operator": "="
 }
}

macaddr

To search by the MAC address of a device, specify the field value as macaddr and the operand value
as the device MAC address. The following example returns results for devices with a MAC address of
C1:1C:N2:0Q:PJ:10 or C1:1C:N2:0Q:PJ:11.

{
 "filter": {
 "operator": "or",
 "rules": [
 {
 "field": "macaddr",
 "operand": "C1:1C:N2:0Q:PJ:10",
 "operator": "="
 },
 {
 "field": "macaddr",
 "operand": "C1:1C:N2:0Q:PJ:11",
 "operator": "="
 }
]
 }
}

name

To search by the device display name, specify the field value as name and the operand value as the
device name or as a regex string.

{
 "filter": {
 "field": "name",
 "operand": "VMware B2CEB6",
 "operator": "="
 }
}

role

To search by the device role, specify the field value as role and the operand value as the device role.

{
 "filter": {
 "field": "role",
 "operand": "voip_phone",
 "operator": "="
 }

ExtraHop 8.1 ExtraHop REST API Guide 26

}

software

To search by the software running on the device, specify the field value as software and the operand
value as the ID associated with that software on the ExtraHop system or as a regex string.

{
 "filter": {
 "field": "software",
 "operand": "windows_10",
 "operator": "="
 }
}

Tip: Programmatically retrieve a list of all software IDs associated with a device through the
GET /devices/{id}/software operation.

In the following example response, the id value for the software is windows_10.

[
 {
 "software_type": "OS",
 "name": "Windows",
 "version": "10",
 "description": null,
 "id": "windows_10"
 }
]

tag

To search by a device tag, specify the field value as tag and the operand value as the tag name or as a
regex string.

{
 "filter": {
 "field": "tag",
 "operand": "Custom Tag",
 "operator": "="
 }
}

Tip: Programmatically retrieve a list of all device tags through the GET /devices/{id}/tags
operation.

In the following example response, the name value for the tag is Custom Tag.

[
 {
 "mod_time": 1521577040934,
 "id": 19,
 "name": "Custom Tag"
 }
]

ExtraHop 8.1 ExtraHop REST API Guide 27

vlan

To search by the ID of a VLAN, specify the field value as vlan and the operand value as the ID of the
VLAN.

{
 "filter": {
 "field": "vlan",
 "operand": "0",
 "operator": "="
 }
}

Search with regular expressions (regex)

For certain field values, the string can be in regex syntax. Specify the operand value as an object that
has a value parameter with the regex syntax you want to match and an is_regex parameter that is set to
true. The following example returns results for all DNS names that end with com.

{
 "filter": {
 "field": "dns_name",
 "operand": {
 "value": ".*?com",
 "is_regex": true
 },
 "operator": "="
 }
}

An operand field with regex syntax is valid for the following field values:

• cdp_name
• custom_name
• dns_name
• dhcp_name
• model
• name
• netbios_name
• software
• tag
• vendor

Supported time units
For most parameters, the default unit for time measurement is milliseconds. However, the following
parameters return or accept alternative time units such as minutes and hours:

• Device

• active_from
• active_until

• Device group

• active_from
• active_until

• Metrics

• from
• until

ExtraHop 8.1 ExtraHop REST API Guide 28

• Record Log

• from
• until
• context_ttl

The following table displays supported time units:

Time unit Unit suffix

Year y

Month M

Week w

Day d

Hour h

Minute m

Second s

Millisecond ms

To specify a time unit other than milliseconds for a parameter, append the unit suffix to the value. For
example, to request devices active in the last 30 minutes, specify the following parameter value:

GET /api/v1/devices?active_from=-30m

The following example specifies a search for HTTP records created between 1 and 2 hours ago:

{
 "from": "-2h",
 "until": "-1h",
 "types": ["~http"]
}

Device group
Device groups can be either static or dynamic.

A static device group is user-defined; you create a device group and then manually identify and assign each
device to that group. A dynamic device group is defined and automatically managed by a set of configured
rules.

For example, you can create a device group and then set a rule to classify all devices within a certain IP
address range to be added to that group automatically. For more information, see Device Groups .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /devicegroups Retrieve all device groups that were active within a
specific time period.

POST /devicegroups Create a new device group.

DELETE /devicegroups/{id} Delete a device group.

GET /devicegroups/{id} Retrieve a specific device group.

https://docs.extrahop.com/8.1/assets-overview/#device-groups

ExtraHop 8.1 ExtraHop REST API Guide 29

Operation Description

PATCH /devicegroups/{id} Update a specific device group.

GET /devicegroups/{id}/alerts Retrieve all alerts that are assigned to a specific
device group.

POST /devicegroups/{id}/alerts Assign and unassign a specific device group to
alerts.

DELETE /devicegroups/{id}/alerts/{child-id} Unassign an alert from a specific device group.

POST /devicegroups/{id}/alerts/{child-id} Assign an alert to a specific device group.

GET /devicegroups/{id}/dashboards Retrieve all dashboards related to a specific device
group.

GET /devicegroups/{id}/devices Retrieve all devices in the device group that are
active within a specific time window.

Note: A device is considered inactive after
five minutes of not sending or receiving
packets. However, if a device resumes
sending or receiving packets after a period
of inactivity shorter than five days, the
device is considered to have been active
continuously, including during the period of
inactivity.

POST /devicegroups/{id}/devices Assign and unassign a devices to a specific static
device group.

DELETE /devicegroups/{id}/devices/{child-id} Unassign a device from a specific static device
group.

POST /devicegroups/{id}/devices/{child-id} Assign a device to a specific static device group.

GET /devicegroups/{id}/pages Retrieve all pages that are assigned to a specific
device group.

POST /devicegroups/{id}/pages Assign and unassign a specific device to pages
group.

DELETE /devicegroups/{id}/pages/{child-id} Unassign a page from a specific device group.

POST /devicegroups/{id}/pages/{child-id} Assign a page to a specific device group.

GET /devicegroups/{id}/triggers Retrieve all triggers that are assigned to a specific
device group.

POST /devicegroups/{id}/triggers Assign and unassign a specific device group to
triggers.

DELETE /devicegroups/{id}/triggers/{child-id} Unassign a trigger from a specific device group.

POST /devicegroups/{id}/triggers/{child-id} Assign a trigger to a specific device group.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

ExtraHop 8.1 ExtraHop REST API Guide 30

Supported time units
For most parameters, the default unit for time measurement is milliseconds. However, the following
parameters return or accept alternative time units such as minutes and hours:

• Device

• active_from
• active_until

• Device group

• active_from
• active_until

• Metrics

• from
• until

• Record Log

• from
• until
• context_ttl

The following table displays supported time units:

Time unit Unit suffix

Year y

Month M

Week w

Day d

Hour h

Minute m

Second s

Millisecond ms

To specify a time unit other than milliseconds for a parameter, append the unit suffix to the value. For
example, to request devices active in the last 30 minutes, specify the following parameter value:

GET /api/v1/devices?active_from=-30m

The following example specifies a search for HTTP records created between 1 and 2 hours ago:

{
 "from": "-2h",
 "until": "-1h",
 "types": ["~http"]
}

Operand values for device groups
The POST /devicegroups operation enables you to create device groups according to criteria specified in
filter objects. Each object should contain a unique value for the operand field that is valid for the specified
field value.

ExtraHop 8.1 ExtraHop REST API Guide 31

activity

To select devices by metric activity, specify the field value as activity and the operand value as a
metric_category. You can find metric_category values in the REST API Parameters section of the
Metric Catalog.

The following example selects devices with metric activity classified for a DHCP client, such as the number
of DHCP requests sent.

{
 "filter": {
 "field": "activity",
 "operand": "dhcp_client",
 "operator": "="
 }
}

Tip: Programmatically retrieve a list of all metric activity for a device through the GET /devices/
{id}/activity operation. The stat_name value matches the metric_category value in
the metric_catalog, after the final dot.

In the following example response, the stat_name value is extrahop.device.dhcp_client. Remove
the text before the final dot to identify the metric_catalog value of dhcp_client.

{
 "id": 198606,
 "from_time": 1581537120000,
 "until_time": 1581542520000,
 "mod_time": 1581542533963,
 "device_id": 30096,
 "stat_name": "extrahop.device.dhcp_client"
}

discover_time

To select devices by a time range, specify the field value as discover_time and an operand value with
from and until parameters, where the values are dates, expressed in milliseconds since the epoch.

The following example selects devices with activity that occurred between 1:00 PM to 3:00 PM on August
21, 2019.

{
 "filter": {
 "field": "discover_time",
 "operand": {
 "from": "1566392400000",
 "until": "1566399600000"
 },
 "operator": "="

ExtraHop 8.1 ExtraHop REST API Guide 32

 }
}

discovery_id

To select devices by unique device ID, specify the field value as discovery_id and the operand value
as the discovery ID.

{
 "filter": {
 "field": "discovery_id",
 "operand": "c12vf90qpg290000",
 "operator": "="
 }
}

ipaddr

To select devices by IP address, specify the field value as ipaddr and the operand value as an IP
address or CIDR block.

{
 "filter": {
 "field": "ipaddr",
 "operand": "192.168.12.0/28",
 "operator": "="
 }
}

node

To select devices by the unique ID of a Discover appliance, specify the field value as node and the
operand value as the appliance UUID.

{
 "filter": {
 "field": "node",
 "operand": "qqvsplfa-zxsk-32l0-19g1-076vfr42pw31",
 "operator": "="
 }
}

macaddr

To select devices by MAC address, specify the field value as macaddr and the operand value as
the device MAC address. The following example returns results for devices with a MAC address of
C1:1C:N2:0Q:PJ:10 or C1:1C:N2:0Q:PJ:11.

{
 "filter": {
 "operator": "or",
 "rules": [
 {
 "field": "macaddr",
 "operand": "C1:1C:N2:0Q:PJ:10",
 "operator": "="
 },
 {
 "field": "macaddr",

ExtraHop 8.1 ExtraHop REST API Guide 33

 "operand": "C1:1C:N2:0Q:PJ:11",
 "operator": "="
 }
]
 }
}

name

To select devices by display name, specify the field value as name and the operand value as the device
name or as a regex string.

{
 "filter": {
 "field": "name",
 "operand": "VMware B2CEB6",
 "operator": "="
 }
}

role

To select devices by role, specify the field value as role and the operand value as the device role.

{
 "filter": {
 "field": "role",
 "operand": "voip_phone",
 "operator": "="
 }
}

software

To select devices by the software running on the device, specify the field value as software and the
operand value as the ID associated with that software on the ExtraHop system or as a regex string.

{
 "filter": {
 "field": "software",
 "operand": "windows_10",
 "operator": "="
 }
}

Tip: Programmatically retrieve a list of all software IDs associated with a device through the
GET /devices/{id}/software operation.

In the following example response, the id value for the software is windows_10.

[
 {
 "software_type": "OS",
 "name": "Windows",
 "version": "10",
 "description": null,
 "id": "windows_10"
 }
]

ExtraHop 8.1 ExtraHop REST API Guide 34

tag

To select devices by tag, specify the field value as tag and the operand value as the tag name or as a
regex string.

{
 "filter": {
 "field": "tag",
 "operand": "Custom Tag",
 "operator": "="
 }
}

Tip: Programmatically retrieve a list of all device tags through the GET /devices/{id}/tags
operation.

In the following example response, the name value for the tag is Custom Tag.

[
 {
 "mod_time": 1521577040934,
 "id": 19,
 "name": "Custom Tag"
 }
]

vlan

To select devices by the ID of a VLAN, specify the field value as vlan and the operand value as the ID
of the VLAN.

{
 "filter": {
 "field": "vlan",
 "operand": "0",
 "operator": "="
 }
}

Search with regular expressions (regex)

For certain field values, the string can be in regex syntax. Specify the operand value as an object that
has a value parameter with the regex syntax you want to match and an is_regex parameter that is set to
true. The following example selects devices with DNS names that end with com.

{
 "filter": {
 "field": "dns_name",
 "operand": {
 "value": ".*?com",
 "is_regex": true
 },
 "operator": "="
 }
}

An operand field with regex syntax is valid for the following field values:

• cdp_name
• custom_name

ExtraHop 8.1 ExtraHop REST API Guide 35

• dns_name
• dhcp_name
• model
• name
• netbios_name
• software
• tag
• vendor

Detections
The Detections class enables you to retrieve detections that have been identified by your appliance.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /detections Retrieve all detections.

POST /detections/search Retrieve detections that match the specified search
criteria.

PATCH /detections/tickets Update a ticket associated with detections.

GET /detections/{id} Retrieve a specific detection.

PATCH /detections/{id} Update a detection.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Email group
You can add individual or group email addresses to an email group and assign them to a system alert. When
that alert is triggered, the system sends an email to all of the addresses in the email group.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /emailgroups Retrieve all email groups.

POST /emailgroups Create a new email group.

DELETE /emailgroups/{id} Delete a email group by a unique identifier.

GET /emailgroups/{id} Retrieve a specific email group by a unique
identifier.

PATCH /emailgroups/{id} Apply updates to a specific email group.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

ExtraHop 8.1 ExtraHop REST API Guide 36

Exclusion intervals
An exclusion interval can be created to set a time period to suppress an alert.

For example, if you do not want to be notified about alerts after hours or on the weekends, an exclusion
interval can create a rule to suppress the alert during that time period. For more information, see Alerts .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /exclusionintervals Retrieve all exclusion intervals.

POST /exclusionintervals Create a new exclusion interval.

DELETE /exclusionintervals/{id} Delete a specific exclusion interval.

GET /exclusionintervals/{id} Retrieve a specific exclusion interval.

PATCH /exclusionintervals/{id} Apply updates to a specific exclusion interval.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

ExtraHop
This resource provides metadata about the ExtraHop system, such as the firmware version or if the
appliance is a Command appliance.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /extrahop Retrieve metadata about the firmware running on
the ExtraHop system.

GET /extrahop/cluster Retrieve Explore cluster configuration settings.

PATCH /extrahop/cluster Update Explore cluster configuration settings.

PUT /extrahop/detections/access Update detections access control settings.

GET /extrahop/edition Retrieve the system edition of the ExtraHop
appliance.

POST /extrahop/firmware Upload a new firmware image to the ExtraHop
system. For more information, see Upgrade
ExtraHop firmware through the REST API.

POST /extrahop/firmware/latest/upgrade Upgrade the ExtraHop system to the most recently
uploaded firmware image.

GET /extrahop/idrac Retrieve the iDRAC IP address of the ExtraHop
system.

GET /extrahop/platform Retrieve the platform name of the ExtraHop
system.

GET /extrahop/processes Retrieve a list of processes running on the ExtraHop
system.

POST /extrahop/processes/{process}/restart Restart a process running on the ExtraHop system.

https://docs.extrahop.com/8.1/alerts

ExtraHop 8.1 ExtraHop REST API Guide 37

Operation Description

GET /extrahop/services Retrieve settings for all services.

PATCH /extrahop/services Update the settings for services.

POST /extrahop/restart Restart the ExtraHop system.

POST /extrahop/sslcert Regenerate the SSL certificate on the ExtraHop
system. For more information, see Create a trusted
SSL certificate through the REST API

PUT /extrahop/sslcert Replace the SSL certificate on the ExtraHop system.

POST /extrahop/sslcert/signingrequest Create an SSL certificate signing request. For more
information, see Create a trusted SSL certificate
through the REST API.

GET /extrahop/ticketing Retrieve the ticketing integration status.

PATCH /extrahop/ticketing Enable or disable ticketing integration.

GET /extrahop/version Retrieve the version of the firmware running on the
ExtraHop system.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

License
This resource enables you to retrieve and set product keys or to retrieve and set a license.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /license Retrieve the license applied to this ExtraHop
system.

PUT /license Apply and register a new license to the ExtraHop
system.

GET /license/productkey Retrieve the product key to this ExtraHop system.

PUT /license/productkey Apply the specified product key to the ExtraHop
system and register the license.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Metrics
Metrics information is collected about every object identified by the ExtraHop appliance.

Note that metrics are retrieved through the POST method, which creates a query to collect the requested
information through the API. For more information, see Extract metrics through the REST API .

The following table displays all of the operations you can perform on this resource:

https://docs.extrahop.com/8.1/rest-extract-metrics

ExtraHop 8.1 ExtraHop REST API Guide 38

Operation Description

POST /metrics Perform a metric query.

GET /metrics/next/{xid} If a previous metric query requested activity group
metrics from a Command appliance, the GET /
metrics/next/{xid} operation retrieves metrics
for the activity group on a connected Discover
appliance. Each time a request is sent to GET /
metrics/next/{xid}, the operation returns metrics
from a different Discover appliance. After all
metrics have been retrieved, the operation returns
null.

POST /metrics/total Perform a metric query for total values.

POST /metrics/totalbyobject Perform a metric query for total values that are
grouped by object.

For example, if you want to see all HTTP responses that occurred on the network in the last 30 minutes,
enter the following request schema into the POST /metrics operation:

{
 "cycle": "auto",
 "from": -1800000,
 "metric_category": "http",
 "metric_specs": [
 {
 "name": "rsp"
 }
],
 "object_ids": [
 0
],
 "object_type": "application",
 "until": 0
}

The response body returns a list of HTTP responses and the time of each event, similar to the following
output:

{
 "stats": [
 {
 "oid": 0,
 "time": 1494539640000,
 "duration": 30000,
 "values": [
 354
]
 },
 {
 "oid": 0,
 "time": 1494539640000,
 "duration": 30000,
 "values": [
 354
]
 },

 {

ExtraHop 8.1 ExtraHop REST API Guide 39

 "oid": 0,
 "time": 1494539640000,
 "duration": 30000,
 "values": [
 354
]
 },
],
 "cycle": "30sec",
 "node_id": 0,
 "clock": 1494541440000,
 "from": 1494539640000,
 "until": 1494541440000
}

Enter the same request schema into the POST /metrics/total operation to retrieve a count of all
HTTP responses that occurred on the network in the last 30 seconds. The response body is similar to the
following output:

{
 "stats": [
 {
 "oid": -1,
 "time": 1494541380000,
 "duration": 1800000,
 "values": [
 33357
]
 }
],
 "cycle": "30sec",
 "node_id": 0,
 "clock": 1494541440000,
 "from": 1494539640000,
 "until": 1494541440000
}

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Supported time units
For most parameters, the default unit for time measurement is milliseconds. However, the following
parameters return or accept alternative time units such as minutes and hours:

• Device

• active_from
• active_until

• Device group

• active_from
• active_until

• Metrics

• from
• until

• Record Log

• from
• until

ExtraHop 8.1 ExtraHop REST API Guide 40

• context_ttl

The following table displays supported time units:

Time unit Unit suffix

Year y

Month M

Week w

Day d

Hour h

Minute m

Second s

Millisecond ms

To specify a time unit other than milliseconds for a parameter, append the unit suffix to the value. For
example, to request devices active in the last 30 minutes, specify the following parameter value:

GET /api/v1/devices?active_from=-30m

The following example specifies a search for HTTP records created between 1 and 2 hours ago:

{
 "from": "-2h",
 "until": "-1h",
 "types": ["~http"]
}

Network
Networks are correlated to the network interface card that receives input from all of the objects identified
by the ExtraHop system.

On an ExtraHop Command appliance, each connected appliance is identified as a network capture that is
looking at the traffic for each ExtraHop Discover appliance that is connected to the Command appliance.
For more information, see Networks .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /networks Retrieve all networks.

GET /networks/{id} Retreive a specific network by ID.

PATCH /networks/{id} Update a specific network by ID.

GET /networks/{id}/alerts Retrieve all alerts that are assigned to a specific
network.

POST /networks/{id}/alerts Assign and unassign alerts to a specific network.

DELETE /networks/{id}/alerts/{child-id} Unassign an alert from a specific network.

POST /networks/{id}/alerts/{child-id} Assign an alert to a specific network.

https://docs.extrahop.com/8.1/assets-overview/#networks

ExtraHop 8.1 ExtraHop REST API Guide 41

Operation Description

GET /networks/{id}/pages Retrieve all pages that are assigned to a specific
network.

POST /networks/{id}/pages Assign and unassign pages to a specific network.

DELETE /networks/{id}/pages/{child-id} Unassign a page from a specific network.

POST /networks/{id}/pages/{child-id} Assign a page to a specific network.

GET /networks/{id}/vlans Retrieve all VLANS assigned to a specific network.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Network locality entry
You can manage a list that specifies the network locality of IP addresses.

For example, you can create an entry in the network locality list that specifies that an IP address or CIDR
block is internal or external.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /networklocalities Retrieve all network locality entries.

POST /networklocalities Create a network locality entry.

DELETE /networklocalities/{id} Delete a network locality entry.

GET /networklocalities/{id} Retrieve a specific network locality entry.

PATCH /networklocalities/{id} Apply updates to a specific network locality entry.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Node
A node is defined by its relationship to an ExtraHop Command appliance. The environment which contains
Discover nodes and a Command appliance is called a Command cluster.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /nodes Retrieve all Discover nodes connected to this
Command appliance.

GET /nodes/{id} Retrieve a specific Discover node that is connected
to this Command appliance.

PATCH /nodes/{id} Update a specific Discover node that is connected
to this Command appliance.

ExtraHop 8.1 ExtraHop REST API Guide 42

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Observations
An observation associates the IP address of a device on the ExtraHop system with an IP address outside
of your network. For example, you can track the activity of a VPN user by associating the IP address of
the VPN client on your internal network with the external IP address assigned to the user on the public
internet.

The following table displays all of the operations you can perform on this resource:

Operation Description

POST /observations/associatedipaddrs Add an observation to create an association
between device IP addresses.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Open Data Stream
An open data stream (ODS) is a channel through which you can send specified metric data to an external,
third-party system. For example, you might want to store or analyze metric data with a remote tool, such as
Splunk, MongoDB, or Amazon Web Services (AWS).

Sending data through an open data stream is a two-step procedure. First, you configure a connection to the
target system that will receive the data. Second, you write a trigger that specifies what data to send to the
target system and when to send it. For more information, see Open Data Streams .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /odstargets Retrieve all Open Data Stream targets.

GET /odstargets/http Retrieve all HTTP Open Data Stream targets.

POST /odstargets/http Create a new HTTP Open Data Stream target.

DELETE /odstargets/http/{name} Delete an HTTP Open Data Stream target.

GET /odstargets/http/{name} Retrieve a specific HTTP Open Data Stream target.

GET /odstargets/kafka Retrieve all Kafka Open Data Stream targets.

POST /odstargets/kafka Create a new Kafka Open Data Stream target.

DELETE /odstargets/kafka/{name} Delete a Kafka Open Data Stream target.

GET /odstargets/kafka/{name} Retrieve a specific Kafka Open Data Stream target.

GET /odstargets/mongodb Retrieve all MongoDB Open Data Stream targets.

POST /odstargets/mongodb Create a new MongoDB Open Data Stream target.

DELETE /odstargets/mongodb/{name} Delete a MongoDB Open Data Stream target.

GET /odstargets/mongodb/{name} Retrieve a specific MongoDB Open Data Stream
target.

https://docs.extrahop.com/8.1/open-data-streams

ExtraHop 8.1 ExtraHop REST API Guide 43

Operation Description

GET /odstargets/raw Retrieve all Raw Open Data Stream targets.

POST /odstargets/raw Create a new Raw Open Data Stream target.

DELETE /odstargets/raw/{name} Delete a Raw Open Data Stream target.

GET /odstargets/raw/{name} Retrieve a specific Raw Open Data Stream target.

GET /odstargets/syslog Retrieve all Syslog Open Data Stream targets.

POST /odstargets/syslog Create a new Syslog Open Data Stream target.

DELETE /odstargets/syslog/{name} Delete a Syslog Open Data Stream target.

GET /odstargets/syslog/{name} Retrieve a specific Syslog Open Data Stream target.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Packet capture
You can retrieve and delete packets stored on ExtraHop Discover appliances.

Note: For ExtraHop Reveal(x), this resource is not supported and has been replaced by the Packet
Search resource.

You must write a trigger to identify the information you want to generate. For example, you can write a
trigger to collect all of the packets going to a particular device that is generating a high volume of errors.
Then, you can download or delete that information. For more information, see Packets .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /packetcaptures Retrieve metadata about all packet captures stored
on this ExtraHop appliance.

DELETE /packetcaptures/{id} Permanently remove a specific packet capture from
the ExtraHop system.

GET /packetcaptures/{id} Download a specific packet capture in PCAP format.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Packet Search
You can search for and download packets stored on ExtraHop Trace and Discover appliances. The
downloaded packets can then be analyzed through a third-party tool, such as Wireshark.

Note: This resource can only retrieve packets stored on ExtraHop Trace appliances. To retrieve
packets stored on a Discover appliance, see the Packet Capture resource.

For more information about Packets, see Packets .

The following table displays all of the operations you can perform on this resource:

https://docs.extrahop.com/8.1/packets
https://docs.extrahop.com/8.1/packets

ExtraHop 8.1 ExtraHop REST API Guide 44

Operation Description

GET /packets/search Search for packets by specifying parameters in a
URL.

POST /packets/search Search for packets by specifying parameters in a
JSON string.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Filter packets with Berkeley Packet Filter syntax
Search for packets with the Berkeley Packet Filter (BPF) syntax alone, or in combination with the built-in
filters.

Berkeley Packet Filters are a raw interface to data link layers and are a powerful tool for intrusion detection
analysis. The BPF syntax enables users to write filters that quickly drill down on specific packets to see the
essential information.

The ExtraHop system constructs a synthetic packet header from the packet index data and then runs the
BPF syntax queries against the packet header to ensure that queries are much faster than scanning the full
packet payload. Note that ExtraHop supports only a subset of the BPF syntax. See Supported BPF syntax.

The BPF syntax consists of one or more primitives preceded by one or more qualifiers. Primitives usually
consist of an ID (name or number) preceded by one or more qualifiers. There are three different kinds of
qualifiers:

type
Qualifiers that indicate what type the ID name or number refers to. For example, host, net, port,
and portrange. If there is no qualifier, host is assumed.

dir
Qualifiers that specify a particular transfer direction to and or from an ID. Possible directions are
src, dst, src and dst, and src or dst. For example, dst net 128.3.

proto
Qualifiers that restrict the match to the particular protocol. Possible protocols are ether, ip, ip6,
tcp, and udp.

Add a filter with BPF syntax

1. Log in to the ExtraHop system through https://<extrahop-hostname-or-IP-address>.
2. From the top menu, click Packets.
3. In the trifield filter section, select BPF, and then type your filter syntax. For example, type src

portrange 80-443 and net 10.10.
4. Click Download PCAP to save the packet capture with your filtered results.

ExtraHop 8.1 ExtraHop REST API Guide 45

Supported BPF syntax
The ExtraHop system supports the following subset of the BPF syntax for filtering packets.

Note: • ExtraHop only supports numeric IP address searches. Hostnames are not allowed.
• Indexing into headers, […], is only supported for tcpflags and ip_offset. For

example, tcp[tcpflags] & (tcp-syn|tcp-fin) != 0
• ExtraHop supports both numeric and hexadecimal values for VLAN ID, EtherType, and

IP Protocol fields. Prefix hexadecimal values with 0x, such as 0x11.

Primitive Examples Description

[src|dst] host <host ip> host 203.0.113.50

dst host 198.51.100.200

Matches a host as the IP source,
destination, or either. These host
expressions can be specified in
conjunction with other protocols
like ip, arp, rarp or ip6.

ether [src|dst] host
<MAC>

ether host
00:00:5E:00:53:00

ether dst host
00:00:5E:00:53:00

Matches a host as the Ethernet
source, destination, or either.

vlan <ID> vlan 100 Matches a VLAN. Valid ID
numbers are 0-4095. VLAN
priority bits are zero.

If the original packet had more
than one VLAN tag, the synthetic
packet the BPF matches against
will only have the innermost
VLAN tag.

[src|dst] portrange <p1>-
<p2>

or

[tcp|udp] [src|dst]
portrange <p1>-<p2>

src portrange 80-88

tcp dst portrange
1501-1549

Matches packets to or from a port
in the given range. Protocols can
be applied to a port range to filter
specific packets within the range.

[ip|ip6][src|dst] proto
<protocol>

proto 1

src 10.4.9.40 and proto
ICMP

ip6 and src
fe80::aebc:32ff:fe84:70b7
and proto 47

ip and src 10.4.9.40 and
proto 0x0006

Matches IPv4 or IPv6 protocols
other than TCP and UDP. The
protocol can be a number or
name.

[ip|ip6][tcp|udp] [src|
dst] port <port>

udp and src port 2005

ip6 and tcp and src port
80

Matches IPv4 or IPv6 packets on
a specific port.

[src|dst] net <network> dst net 192.168.1.0

src net 10

net 192.168.1.0/24

Matches packets to or from a
source or destination or either,
that reside in a network. An IPv4

ExtraHop 8.1 ExtraHop REST API Guide 46

Primitive Examples Description
network number can be specified
as one of the following values:

• Dotted quad (x.x.x.x)
• Dotted triple (x.x.x)
• Dotted pair (x.x)
• Single number (x)

[ip|ip6] tcp tcpflags &
(tcp-[ack|fin|syn|rst|
push|urg|)

tcp[tcpflags] & (tcp-
ack) !=0

tcp[13] & 16 !=0

ip6 and (ip6[40+13] &
(tcp-syn) != 0)

Matches all packets with the
specified TCP flag

Fragmented IPv4 packets
(ip_offset != 0)

ip[6:2] & 0x3fff !=
0x0000

Matches all packets with
fragments.

Page
Pages provide a template for creating a customized view of built-in metrics or metrics collected from
triggers.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /pages Retrieve all pages.

POST /pages Create a page.

DELETE /pages/{id} Delete a single page.

GET /pages/{id} Retrieve a single page.

PATCH /pages/{id} Update a single page.

GET /pages/{id}/applications Retrieve all applications that have a specific page
assigned.

POST /pages/{id}/applications Assign and unassign a specific page to applications.

DELETE /pages/{id}/applications/{child-id} Unassign an application from a specific page.

POST /pages/{id}/applications/{child-id} Assign an application to a specific page.

GET /pages/{id}/devicegroups Retrieve all device groups that are assigned to a
specific page.

POST /pages/{id}/devicegroups Assign and unassign a specific page to device
groups.

DELETE /pages/{id}/devicegroups/{child-id} Unassign a device group from a specific page.

POST /pages/{id}/devicegroups/{child-id} Assign a device group to a specific page.

GET /pages/{id}/devices Retrieve all devices that have a specific page
assigned.

POST /pages/{id}/devices Assign and unassign a specific page to devices.

ExtraHop 8.1 ExtraHop REST API Guide 47

Operation Description

DELETE /pages/{id}/devices/{child-id} Unassign a device from a specific page.

POST /pages/{id}/devices/{child-id} Assign a device to a specific page.

GET /pages/{id}/networks Retrieve all networks that have a specific page
assigned.

POST /pages/{id}/networks Assign and unassign a specific page to networks.

DELETE /pages/{id}/networks/{child-id} Unassign a network from a specific page.

POST /pages/{id}/networks/{child-id} Assign a network to a specific page.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Pairing
This resource enables you to generate a token required to connect a Discover appliance to a Command
appliance.

The following table displays all of the operations you can perform on this resource:

Operation Description

POST /pairing/token Generate a token required to connect the Discover
appliance to a Command appliance.

Record Log
Records are structured flow and transaction information about events on your network.

After you connect an ExtraHop Discover appliance to an ExtraHop Explore appliance, you can generate and
send record information to the Explore appliance for storage, and you can query records to retrieve stored
information about any object on your network. For more information, see Query for records through the
REST API .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /records/cursor/{cursor} Deprecated. Replaced by POST /records/
cursor.

POST /records/cursor Retrieve records starting at a specified cursor.

POST /records/search Perform a record log query.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Operand values in record queries
The operand field in the POST /records/search method specifies the value that a record query
attempts to match. You can specify either the value only or both the data type and the value. If you specify

https://docs.extrahop.com/8.1/rest-query-records
https://docs.extrahop.com/8.1/rest-query-records

ExtraHop 8.1 ExtraHop REST API Guide 48

only the value, the query will refer to the record format associated with the field parameter to determine
the data type of the value.

For example, if you want to search for an IP address, you can specify an IP address data type, and then
provide the actual address as the value.

The following example explicitly specifies the data type and value of the operand:

{
 "from": -1000,
 "filter": {
 "field" : "senderAddr",
 "operator": "=",
 "operand" : { "type" : "ipaddr4", "value": "1.2.3.4" }
 }
}

The following example specifies only the value of the operand:

{
 "from": -1000,
 "filter": {
 "field" : "senderAddr",
 "operator": "=",
 "operand" : "1.2.3.4"
 }
}

You can explicitly specify the following data types in the operand field:

• ipaddr4
• ipaddr6
• device

Note: You must specify the discovery ID of the device in the value field. You can find the
discovery ID of a device through the GET /devices method.

• application
• string
• number
• boolean

The operand field supports CIDR notation when filtering by IP addresses; the operator field must be set
to "=" or "!=".

You can specify multiple filters by including the rules option, as shown in the following example:

{
 "filter": {
 "operator": "and",
 "rules": [
 {
 "field": "method",
 "operand": "SMB2_READ",
 "operator": "="
 },
 {
 "field": "reqL2Bytes",
 "operand": "100",
 "operator": ">"
 }
]
 },

ExtraHop 8.1 ExtraHop REST API Guide 49

 "types": [
 "~cifs"
],
 "from": "-30m"
}

Supported time units
For most parameters, the default unit for time measurement is milliseconds. However, the following
parameters return or accept alternative time units such as minutes and hours:

• Device

• active_from
• active_until

• Device group

• active_from
• active_until

• Metrics

• from
• until

• Record Log

• from
• until
• context_ttl

The following table displays supported time units:

Time unit Unit suffix

Year y

Month M

Week w

Day d

Hour h

Minute m

Second s

Millisecond ms

To specify a time unit other than milliseconds for a parameter, append the unit suffix to the value. For
example, to request devices active in the last 30 minutes, specify the following parameter value:

GET /api/v1/devices?active_from=-30m

The following example specifies a search for HTTP records created between 1 and 2 hours ago:

{
 "from": "-2h",
 "until": "-1h",
 "types": ["~http"]
}

ExtraHop 8.1 ExtraHop REST API Guide 50

Report
A report is a PDF file of a dashboard that you can schedule for email delivery to one or more recipients. You
can specify how often the report email is delivered and the time interval for dashboard data included in the
PDF file.

Important: You can only schedule reports from an ExtraHop Command appliance.

Here are some important considerations about scheduled reports:

• You can only create a report for dashboards that you own or have been shared with you. Your ability to
create a report is determined by your user privileges. Contact your ExtraHop administrator for help.

• Each report can only link to one dashboard.
• If you created a report for a dashboard that was later deleted or became inaccessible to you, the

scheduled email will continue to be sent to recipients. However, the email will not include the PDF file
and will instead notify recipients that the dashboard is unavailable to the report owner.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /reports Retrieve all reports.

POST /reports Create a report.

DELETE /reports/{id} Delete a specific report.

GET /reports/{id} Retrieve a specific report.

PATCH /reports/{id} Update a specific report.

GET /reports/{id}/contents Retrieve the contents of a specific report.

PUT /reports/{id}/contents Replace the contents of a specific report.

POST /reports/{id}/emailgroups Change the email group assigned to a specific
scheduled report.

GET /reports/{id}/emailgroups Retrieve a list of email groups assigned to a specific
scheduled report.

DELETE /reports/{id}emailgroups/{group-id} Remove an email group from a specific scheduled
report.

POST /reports/{id}emailgroups/{group-id} Add an email group to a specific scheduled report.

POST /reports/{id}/queue Immediately generate and send a specific report.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Running config
The running configuration file is a JSON document that contains core system configuration information for
the ExtraHop system.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /runningconfig Retrieve the current running configuration file.

ExtraHop 8.1 ExtraHop REST API Guide 51

Operation Description

PUT /runningconfig Replace the current running configuration file.
Configuration file changes are not automatically
saved.

POST /runningconfig/save Save the current changes to the running
configuration file.

GET /runningconfig/saved Retrieve the saved running configuration file.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Software
You can view a list of software that the ExtraHop system has observed on your network.

Operation Description

GET /software Retrieve software observed by the ExtraHop
system.

GET /software/{id} Retrieve software observed by the ExtraHop
system by ID.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

SSL decrypt key
This resource enables you to add a decryption key for your network traffic.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /ssldecryptkeys Retrieve all SSL decryption keys.

POST /ssldecryptkeys Create a new SSL decryption key.

DELETE /ssldecryptkeys/{id} Remove an SSL key from the ExtraHop system.

GET /ssldecryptkeys/{id} Retrieve an SSL PEM and metadata.

PATCH /ssldecryptkeys/{id} Update an existing SSL decryption key.

GET /ssldecryptkeys/{id}/protocols Retrieve all protocols assigned to an SSL decryption
key.

POST /ssldecryptkeys/{id}/protocols Create a new protocol for an SSL decryption key.

DELETE /ssldecryptkeys/{id}/protocols/{child-id} Delete a protocol from an SSL decryption key.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

ExtraHop 8.1 ExtraHop REST API Guide 52

Support pack
A support pack is a file that contains configuration adjustments provided by ExtraHop Support.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /supportpacks Retrieve metadata about all support packs.

POST /supportpacks/execute Run a new support pack.

GET /supportpacks/queue/{id} Check on the status of an in-progress, running
support pack.

GET /supportpacks/{filename} Downlolad an existing support pack by filename.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Tag
Device tags enable you to associate a device or group of devices by some characteristic.

For example, you might tag all of your HTTP servers or tag all of the devices that are in a common subnet.
For more information, see Tag a device through the REST API .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /tags Retrieve all tags.

POST /tags Create a a new tag.

DELETE /tags/{id} Delete a specific tag.

GET /tags/{id} Retrieve a specific tag.

PATCH /tags/{id} Apply updates to a specific tag.

GET /tags/{id}/devices Retrieve all devices that are assigned to a specific
tag.

POST /tags/{id}/devices Assign and unassign a specific tag to devices.

DELETE /tags/{id}/devices/{child-id} Unassign a device from a specific tag.

POST /tags/{id}/devices/{child-id} Assign a device to a specific tag.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Threat Collection
The Threat Collection resource enables you to upload Structured Threat Information eXpression (STIX) files
to threat collections in your Reveal(x) system. STIX files must be obtained from a TAXII server or threat
intelligence platform in TAR or TAR.GZ format, and then uploaded to your Reveal(x) system.

https://docs.extrahop.com/8.1/rest-tag-device

ExtraHop 8.1 ExtraHop REST API Guide 53

Note: This topic applies only to ExtraHop Reveal(x) Premium and Ultra.

For information about uploading STIX files through the ExtraHop Web UI, see Upload STIX files through
the REST API .

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /threatcollections Retrieve all threat collections.

DELETE /threatcollections/{id} Delete a threat collection.

PUT /threatcollections/{id} Upload a new threat collection. ExtraHop currently
supports STIX versions 1.0 - 1.2.

Note: If a threat collection with the same name
already exists on the appliance, the existing
threat collection is overwritten.

GET /threatcollections/{id}/observables Retrieve the number of STIX observables loaded
from a threat collection, such as IP address,
hostname, or URI.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Trigger
Triggers are custom scripts that perform an action upon a pre-defined event.

For example, you can write a trigger to record a custom metric every time an HTTP request occurs, or
classify traffic for a particular server as an Application server. For more information, see the Trigger API
Reference . For supplemental implementation notes about advanced options, see Advanced trigger
options.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /triggers Retrieve all triggers.

POST /triggers Create a new trigger.

POST triggers/externaldata Sends data to the Trigger API by running the
EXTERNAL_DATA event. You can access the data
through the ExternalData trigger class.

DELETE /triggers/{id} Delete a specific identifier.

GET /triggers/{id} Retrieve a specific trigger by unique identifier.

PATCH /triggers/{id} Update an existing trigger.

GET /triggers/{id}/devicegroups Retrieve all device groups that are assigned to a
specific trigger.

POST /triggers/{id}/devicegroups Assign and unassign a specific trigger to device
groups.

DELETE /triggers/{id}/devicegroups/{child-id} Unassign a device group from a specific trigger.

https://docs.extrahop.com/8.1/rest-upload-stix
https://docs.extrahop.com/8.1/rest-upload-stix
https://docs.extrahop.com/8.1/extrahop-trigger-api/
https://docs.extrahop.com/8.1/extrahop-trigger-api/
https://docs.extrahop.com/8.1/extrahop-trigger-api/#externaldata

ExtraHop 8.1 ExtraHop REST API Guide 54

Operation Description

POST /triggers/{id}/devicegroups/{child-id} Assign a device group to a specific trigger.

GET /triggers/{id}/devices Retrieve all devices that are assigned to a specific
trigger.

POST /triggers/{id}/devices Assign and unassign a specific trigger to devices.

DELETE /triggers/{id}/devices/{child-id} Unassign a device from a specific trigger.

POST /triggers/{id}/devices/{child-id} Assign a device to a specific trigger.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Advanced trigger options
Advanced trigger options are configuration options that you can set depending on the system events
associated with the trigger. For example, you can configure the number of payload bytes to buffer on HTTP
request events.

Advanced options are contained in the hints object of the trigger resource as shown in the following
example:

"hints": {
"flowClientPortMin": null,
"flowClientBytes": 16384,
"flowClientPortMax": null,
"flowServerBytes": 16384,
"flowPayloadTurn": true,
"flowServerPortMin": 135,
"flowServerPortMax": 49155
}

The following table describes available advanced options and applicable events:

Option Description Applicable events

"snaplen": number Specifies the number of bytes
to capture per packet, up to a
maximum of 65535. The capture
starts with the first byte in the
packet. Specify this option only
if the trigger script captures
packets.

A value of 0 configures the trigger
to capture the maximum number
of bytes for each packet.

All events except:

• ALERT_RECORD_COMMIT
• METRIC_CYCLE_BEGIN
• METRIC_CYCLE_END
• FLOW_REPORT
• NEW_APPLICATION
• NEW_DEVICE
• SESSION_EXPIRE

"payloadBytes": number Specifies the minimum number of
payload bytes to buffer.

• CIFS_REQUEST
• CIFS_RESPONSE
• HTTP_REQUEST
• HTTP_RESPONSE
• ICA_TICK

ExtraHop 8.1 ExtraHop REST API Guide 55

Option Description Applicable events

"clipboardBytes": number Specifies the number of bytes
to buffer on a Citrix clipboard
transfer.

• ICA_TICK

"cycle": [30sec, 5min,
1hr, 24hr]

Specifies the length of the metric
cycle, expressed in seconds.

• METRIC_CYCLE_BEGIN
• METRIC_CYCLE_END
• METRIC_RECORD_COMMIT

"metricTypes": string Specifies the metric type by
the raw metric name such as
extrahop.device.http_server.

• ALERT_RECORD_COMMIT
• METRIC_RECORD_COMMIT

"flowPayloadTurn":
boolean

Enables packet capture on each
flow turn.

Per-turn analysis continuously
analyzes communication between
two endpoints to extract a single
payload data point from the flow.

If this option is enabled,
any values specified for the
flowClientString and
flowServerString options are
ignored.

• SSL_PAYLOAD
• TCP_PAYLOAD

"flowClientPortMin":
number

Specifies the minimum port
number of the client port range.

Valid values are 0 to 65535.

A value of 0 specifies matching of
any port.

• SSL_PAYLOAD
• TCP_PAYLOAD
• UDP_PAYLOAD

"flowClientPortMax":
number

Specifies the maximum port
number of the client port range.

Valid values are 0 to 65535.

Any value specified for this option
is ignored if the value of the
flowClientPortMin option is
0.

• SSL_PAYLOAD
• TCP_PAYLOAD
• UDP_PAYLOAD

"flowClientBytes": number Specifies the number of client
bytes to buffer.

The value of this option cannot
be set to 0 if the value of the
flowServerBytes option is also
set to 0.

• SSL_PAYLOAD
• TCP_PAYLOAD

"flowClientString":
string

Specifies the format string of
client data to process.

Any value specified for
this option is ignored if the
flowPayloadTurn option is
enabled.

• SSL_PAYLOAD
• TCP_PAYLOAD
• UDP_PAYLOAD

ExtraHop 8.1 ExtraHop REST API Guide 56

Option Description Applicable events

"flowServerPortMin":
number

Specifies the minimum port
number of the server port range.

Valid values are 0 to 65535.

A value of 0 specifies matching of
any port.

• SSL_PAYLOAD
• TCP_PAYLOAD
• UDP_PAYLOAD

"flowServerPortMax":
number

Specifies the maximum port
number of the server port range.

Valid values are 0 to 65535.

Any value specified for this option
is ignored if the value of the
flowServerPortMin option is
0.

• SSL_PAYLOAD
• TCP_PAYLOAD
• UDP_PAYLOAD

"flowServerBytes": number Specifies the number of server
bytes to buffer.

The value of this option cannot
be set to 0 if the value of the
flowClientBytes option is also
set to 0.

• SSL_PAYLOAD
• TCP_PAYLOAD

"flowServerString":
string

Specifies the format string of
server data to process. Returns
the entire packet upon a string
match.

Any value specified for
this option is ignored if the
flowPayloadTurn option is
enabled.

• SSL_PAYLOAD
• TCP_PAYLOAD
• UDP_PAYLOAD

"flowUdpAll": boolean Enables capture of all UDP
datagrams.

• UDP_PAYLOAD

"fireClassifyOnExpiration":
boolean

Enables running the event upon
expiration in order to accumulate
metrics for flows that were not
classified before expiring.

• FLOW_CLASSIFY

User
The user resource enables you to create and manage the list of users who have access to the ExtraHop
system and the privilege levels for those users.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /users Retrieve all users.

POST /users Create a new user.

DELETE /users/{username} Delete a specific user.

ExtraHop 8.1 ExtraHop REST API Guide 57

Operation Description

GET /users/{username} Retrieve a specific user.

PATCH /users/{username} Update settings for a specific user.

GET /users/{username}/apikeys Retrieve all API keys for a specific user.

GET /users/{username}/apikeys/{keyid} Retrieve information about a specific API key and
user.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

User group
The user group resource enables you to manage and update groups of users and their dashboard sharing
associations.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /usergroups Retrieve all user groups.

POST /usergroups Create a new user group.

POST /usergroups/refresh Query LDAP for the most recent user memberships
for all remote user groups.

DELETE /usergroups/{id} Delete a specific user group.

GET /usergroups/{id} Retrieve a specific user group.

PATCH /usergroups/{id} Update a specific user group.

DELETE /usergroups/{id}/associations Delete all dashboard sharing associations with a
specific user group.

GET /usergroups/{id}/members Retrieve all members of a specific user group.

PATCH /usergroups/{id}/members Assign or unassign users from a user group.

PUT /usergroups/{id}/members Replace user group assignments.

POST /usergroups/{id}/refresh Query LDAP for the most recent user membership
of a specific remote user group.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

VLAN
Virtual LANs are logical groupings of traffic or devices on the network.

The following table displays all of the operations you can perform on this resource:

Operation Description

GET /vlans Retrieve all VLANs

ExtraHop 8.1 ExtraHop REST API Guide 58

Operation Description

GET /vlans/{id} Retrieve a specific VLAN.

PATCH /vlans/{id} Update a specific VLAN.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

Whitelist (Watchlist)
To guarantee that an asset, such as an important server, database, or laptop, is guaranteed Advanced
Analysis, you can add that device to the whitelist, which is referred to as the watchlist in the Web UI.

Tip: If you want to add several devices to the whitelist, consider creating a device group and then
prioritizing that group for Advanced Analysis.

Here are important considerations about the whitelist:

• The whitelist only applies to Advanced Analysis.
• The whitelist can contain as many devices as allowed by the Advanced Analysis capacity, which is

determined by your license.
• A device stays on the whitelist whether it is inactive or active. A device has to be active for the

ExtraHop system to collect Advanced Analysis metrics.

For more information about Advanced Analysis, see Analysis levels .

The following table displays all of the operations you can perform on this resource:

Operation Description

DELETE /whitelist/device/{id} Remove a device from the whitelist.

POST /whitelist/device/{id} Add a device to the whitelist.

GET /whitelist/devices Retrieve all devices that are in the whitelist.

POST /whitelist/devices Add or remove devices from the whitelist.

Implementation information and instructions for each operation are documented in the REST API Explorer.
You can click on any operation in the REST API Explorer to view implementation information such as
parameters, response class and messages, and JSON model and schema.

https://docs.extrahop.com/8.1/analysis_priorities/#compare-analysis-levels

ExtraHop 8.1 ExtraHop REST API Guide 59

ExtraHop REST API examples
The following examples demonstrate common REST API operations.

• Change a dashboard owner through the REST API
• Extract the device list through the REST API
• Create and assign a device tag through the REST API
• Query for metrics about a specific device through the REST API
• Create, retrieve, and delete an object through the REST API
• Query the record log

Upgrade ExtraHop firmware through the REST API
You can automate upgrades to the firmware on your ExtraHop appliances through the ExtraHop REST API.
This guide includes methods for both the cURL command and a Python script.

While the firmware upgrade process is similar across all ExtraHop appliances, some appliances have
additional considerations or steps that you must address before you install the firmware in your
environment. If you need assistance with your upgrade, contact ExtraHop Support.

All appliances must meet the following requirements:

• The firmware version must be compatible with your appliance model.
• The firmware version on your appliance must be supported by the upgrade version.
• Command appliances must be running firmware that is greater than or equal to their connected

appliances.
• Discover appliances must be running firmware that is greater than or equal to Explore and Trace

appliances.

If your deployment only includes a Discover appliance, proceed to the cURL or Python upgrade
instructions.

If your deployment includes additional appliance types, you must address the following dependencies
before proceeding with the upgrade instructions.

If your deployment includes... Pre-upgrade tasks Upgrade order

Command appliances Reserve a maintenance window of
an hour for Command appliances
managing 50,000 devices or more.

Explore appliances See Upgrading Explore appliances.

Trace appliances None

• Command appliance
• Discover appliances
• All Explore appliances

(master nodes, then data
nodes)

• Trace appliances

Upgrade ExtraHop firmware with cURL
You can upgrade the firmware on an ExtraHop appliance through the cURL command.

Before you begin

• The cURL tool must be installed on your machine.
• The appliance firmware .tar file must be downloaded on your machine.

1. Open a terminal application.
2. Upload the firmware file.

ExtraHop 8.1 ExtraHop REST API Guide 60

Run the following command, where YOUR_KEY is the API key for your user account, HOSTNAME is
the hostname of your ExtraHop appliance, and FILE_PATH is the relative file path of the appliance
firmware .tar file:

curl -X POST https://HOSTNAME/api/v1/extrahop/firmware --data-binary
 @FILE_PATH -H "Content-Type:application/vnd.extrahop.firmware" -H
 "Authorization: ExtraHop apikey=YOUR_KEY"

3. Upgrade the appliance firmware.

Run the following command, where YOUR_KEY is the API key for your user account, and HOSTNAME is
the hostname of your ExtraHop appliance:

curl -X POST "https://HOST/api/v1/extrahop/firmware/latest/upgrade" -H
 "accept: application/json" -H "Authorization: ExtraHop apikey=YOUR_KEY"
 -H "Content-Type: application/json" -d "{ \"restart_after\": true}"

4. Verify that the appliance has been successfully upgraded.

Run the following command, where YOUR_KEY is the API key for your user account, and HOSTNAME is
the hostname of your ExtraHop appliance:

curl -X GET https://HOST/api/v1/extrahop -H "Authorization: ExtraHop
 apikey=YOUR_KEY"

The command displays an object that contains information about the firmware currently running on the
appliance. Verify that the version field matches the firmware version you are upgrading to. If the above
command does not display the correct version number, wait a few minutes, and then try again. It might
take several minutes for the upgrade to complete.

Python script example
The following example Python script upgrades multiple appliances by reading the appliance URLs, API keys,
and firmware file paths from a CSV file.

Each row of the CSV file must contain the following columns in the specified order:

Appliance HTTPS URL API key Firmware file path

The script includes the following configuration variable that you must replace with information from your
environment:

• APPLIANCE_LIST: The relative file path of the CSV file.

Note: The script does not automatically disable record ingest for Explore appliances. You must
manually disable record ingest before running the script for an Explore appliance.

#!/usr/bin/python3

import os
import requests
import csv

APPLIANCE_LIST = 'appliances.csv'

Retrieve URLs, API keys, and firmware file paths
appliances = []
with open(APPLIANCE_LIST, 'rt', encoding='ascii') as f:
 reader = csv.reader(f)
 for row in reader:
 appliance = {
 'host': row[0],

ExtraHop 8.1 ExtraHop REST API Guide 61

 'api_key': row[1],
 'firmware': row[2]
 }
 appliances.append(appliance)

Function that uploads firmware to appliance
def uploadFirmware(host, api_key, firmware):
 headers = {
 'Authorization': 'ExtraHop apikey=%s' % api_key,
 'Content-Type': 'application/vnd.extrahop.firmware'
 }
 url = host + 'api/v1/extrahop/firmware'
 file_path = os.path.join(firmware)
 data = open(file_path, 'rb')
 r = requests.post(url, data=data, headers=headers)
 if r.status_code == 201:
 print('Uploaded firmware to ' + host)
 return True
 else:
 print('Failed to upload firmware to ' + host)
 print(r.text)
 return False

Function that upgrades firmware on appliance
def upgradeFirmware(host, api_key):
 headers = {'Authorization': 'ExtraHop apikey=%s' % api_key}
 url = host + 'api/v1/extrahop/firmware/latest/upgrade'
 r = requests.post(url, headers=headers)
 print(r.status_code)
 if r.status_code == 202:
 print('Upgraded firmware on ' + host)
 return True
 else:
 print('Failed to upgrade firmware on ' + host)
 print(r.text)
 return False

Upgrade firmware for each appliance
for appliance in appliances:
 host = appliance['host']
 api_key = appliance['api_key']
 firmware = appliance['firmware']
 upload_success = uploadFirmware(host, api_key, firmware)
 if upload_success:
 upgradeFirmware(host, api_key)

Note: If the script returns an error message that the SSL certificate verification failed, make sure
that a trusted certificate has been added to your ExtraHop system . Alternatively, you can
add the verify=False option to bypass certificate verification. However, this method
is not secure and is not recommended. The following code sends an HTTP GET request
without certificate verification:

requests.get(url, headers=headers, verify=False)

Upgrading Explore appliances

Pre-upgrade tasks

Before upgrading an Explore appliance, you must halt record ingest. You can halt record ingest for all of the
nodes in a cluster from a single node.

https://docs.extrahop.com/8.1/eh-admin-ui-guide/#ssl-certificate

ExtraHop 8.1 ExtraHop REST API Guide 62

Note: The message Could not determine ingest status on some nodes and Error
might appear on the Cluster Data Management page in the Admin UI of the upgraded nodes
until all nodes in the cluster are upgraded. These errors are expected and can be ignored.

1. Open a terminal application.
2. Run the following command, where YOUR_KEY is the API for your user account, and HOSTNAME is the

hostname of your Explore appliance:

curl -X PATCH "https://HOST/api/v1/extrahop/cluster" -H "accept:
 application/json" -H "Authorization: ExtraHop apikey=YOUR_KEY" -H
 "Content-Type: application/json" -d "{ \"ingest_enabled\": false}"

Post-upgrade tasks

After you have upgraded all of the nodes in the Explore cluster, enable record ingest.

1. Open a terminal application.
2. Run the following command, where YOUR_KEY is the API for your user account, and HOSTNAME is the

hostname of your Explore appliance:

curl -X PATCH "https://HOST/api/v1/extrahop/cluster" -H "accept:
 application/json" -H "Authorization: ExtraHop apikey=YOUR_KEY" -H
 "Content-Type: application/json" -d "{ \"ingest_enabled\": false}"

Change a dashboard owner through the REST API
Dashboards are owned by the logged in user that created them. If a user is no longer with your company,
you might need to change the owner of the dashboard to maintain that dashboard.

To transfer ownership of a dashboard, you need the dashboard ID and the username of the dashboard
owner. You can only view the username of the owner of a dashboard through the REST API.

Before you begin

• You must log in to the ExtraHop system with an account that has unlimited privileges to generate an
API key.

• You must have a valid API key to make changes through the REST API and complete the procedures
below. (See Generate an API key.)

• Familiarize yourself with the ExtraHop REST API Guide to learn how to navigate the ExtraHop REST
API Explorer.

Retrieve the dashboard IDs
1. In a browser, navigate to the REST API Explorer.

The URL is the hostname or IP address of your ExtraHop Discover or Command appliance, followed by
/api/v1/explore/. For example, if your hostname is seattle-eda, the URL is https://seattle-
eda/api/v1/explore/.

2. Click Enter API Key and then paste or type your API key into the API Key field.
3. Click Authorize and then click Close.
4. Click Dashboard to display dashboard operations.

https://docs.extrahop.com/8.1/rest-api-guide/

ExtraHop 8.1 ExtraHop REST API Guide 63

5. Click GET /dashboards.
6. Click Try it out and then click Send Request to send the request to your appliance.
7. Search for the dashboards by the dashboard name or by the user account listed in the "owner" field. If

your list of dashboards is long, you can press control-F and search the response body.
For our example, we want to change the "LDAP Server Health" dashboard created by the user
account for "marksmith":

{
 "id": 1876,
 "comment": null,
 "mod_time": 1507576983922,
 "author": "Mark Smith",
 "name": "LDAP Server Health",
 "owner": "marksmith",
 "built-in": false,
 "short_code": "MpXgk",
 "rights": [
 "transfer",
 "view",
 "edit",
 "share",
 "delete"
]
}

8. Note the number in the "id" field for each dashboard you want to modify.

Change the dashboard owner
1. Scroll down the page of Dashboard operations to the /dashboards/{id} section.
2. Click PATCH /dashboards/{id}.
3. Click Try it out.

The JSON schema is automatically added to the body parameter text box.
4. In the body text box, in the "owner" field, replace string with the username of the new owner.
5. In the id field, type the number you previously noted for the dashboard.

For our example, this value is 1876. (You can only modify one dashboard at a time through the REST
API Explorer.)
In the following figure, we added the JSON "string" for the "owner" parameter to the body
parameter text box, changed "string" to "paulanderson", and typed "1876" in the id field.

ExtraHop 8.1 ExtraHop REST API Guide 64

6. Click Send Request to send the request to your appliance.
Under Server response, the Code column displays 204 if the operation is successful. You can click
GET /dashboards again to verify that the "owner" field has changed. Note that you can only change
the dashboard owner. You cannot change the dashboard name or author fields through the REST API.

The dashboard is now available under My Dashboards in the ExtraHop Web UI for the new user. As
the new owner, you can now log in to your ExtraHop system and change other dashboard properties,
such as the dashboard name or author.

Tip: After you click Send Request, the REST API Explorer provides scripts for the operation in Curl,
Python 2.7, or Ruby.

Python script example
The following example script searches for all dashboards owned by the user account marksmith on an
ExtraHop appliance with the hostname extrahop.example.com and then changes the owner for all of
those dashboards to the user account paulanderson.

#!/usr/bin/python3

import http.client
import json

HOST = 'extrahop.example.com'

ExtraHop 8.1 ExtraHop REST API Guide 65

APIKEY = '123456789abcdefghijklmnop'

headers = {'Accept': 'application/json',
 'Authorization': 'ExtraHop apikey=%s' % APIKEY}
conn = http.client.HTTPSConnection(HOST)
conn.request('GET', '/api/v1/dashboards', headers=headers)
resp = conn.getresponse()
parsed_resp = json.loads(resp.read())

for dashboard in parsed_resp:
 if dashboard['owner'] == 'marksmith':
 print('Dashboard {id} owned by marksmith.'
 ' Switching ownership...'.format(id=dashboard['id']))
 config = {'owner': 'paulanderson'}
 conn.request('PATCH', '/api/v1/dashboards/{id}'.format(
 id=dashboard['id']), json.dumps(config), headers=headers)
 resp = conn.getresponse()
 resp.read()

Note: If the script returns an error message that the SSL certificate verification failed, make sure
that a trusted certificate has been added to your ExtraHop system . Alternatively, you can
add the context option and send the request over TLSv1.2 to bypass certificate verification.
However, this method is not secure and is not recommended. The following code creates an
HTTP connection over TLSv1.2:

conn = httplib.HTTPSConnection(HOST,
 context=ssl.SSLContext(ssl.PROTOCOL_TLSv1_2))

Extract the device list through the REST API
The ExtraHop REST API enables you to extract the list of devices discovered by a Discover appliance. By
extracting the list with a REST API script, you can export the list in a format that can be read by third-party
applications, such as a configuration management database (CMDB). In this topic, we show methods for
extracting a list through both the cURL command and a Python script.

Before you begin

• You must log in to the ExtraHop system with an account that has full write privileges to generate an
API key.

• You must have a valid API key to retrieve devices through the REST API and complete the procedures
below. (See Generate an API key.)

Retrieve the device list with the cURL command
The device list includes all device metadata, such as MAC addresses and device IDs. However, you can
filter the list of devices with a JSON parser to extract the specific information you want to export. In this
example, the device list is retrieved and then filtered with the jq parser to only extract the display name of
each device.

Before you begin

• The cURL tool must be installed on your machine.
• The jq parser must be installed on your machine. For more information, see https://stedolan.github.io/

jq/ .

https://docs.extrahop.com/8.1/eh-admin-ui-guide/#ssl-certificate
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

ExtraHop 8.1 ExtraHop REST API Guide 66

Open a terminal application and run the following command, where YOUR_KEY is the API for your user
account, HOSTNAME is the hostname of your Discover appliance, and MAX_DEVICES is a number large
enough to be more than the total number of devices discovered by your appliance:

curl -s -X GET --header "Accept: application/json" --header
 "Authorization: ExtraHop apikey=YOUR_KEY" "https://HOSTNAME/api/v1/
devices?active_from=1&active_until=0&limit=MAX_DEVICES" | jq -r '.[]
 | .display_name'

Note: If the command returns no results, make sure that a trusted certificate has been added
to your ExtraHop system . Alternatively, you can add the --insecure option to
retrieve the device list from an appliance without a trusted certificate; however, this
method is not secure and is not recommended.

Tip: You can append the select(.analysis == "LEVEL") option to filter results by
analysis level. For example, the following command limits the results to include only
devices that are selected for advanced analysis:

curl -s -X GET --header "Accept: application/json" --header
 "Authorization: ExtraHop apikey=YOUR_KEY" "https://HOSTNAME/
api/v1/devices?active_from=1&active_until=0&limit=10000000000"
 | jq -r '.[] | select(.analysis == "advanced") | .display_name'

Tip: You can append the select(.critical == BOOLEAN) option to filter results by the
critical field. For example, the following command limits the results to include only devices
that are identified as critical by the ExtraHop system:

curl -s -X GET --header "Accept: application/json" --header
 "Authorization: ExtraHop apikey=YOUR_KEY" "https://HOSTNAME/
api/v1/devices?active_from=1&active_until=0&limit=10000000000"
 | jq -r '.[] | select(.critical == true) | .display_name'

Python script example
The following example Python script extracts the device list, including all device metadata, and writes the
list to a CSV file in the same directory as the script. The script includes the following configuration variables
that you must replace with information from your environment:

• HOST: The IP address or hostname of the Discover appliance

• APIKEY: The API key

• FILENAME: The file that output will be written to

• LIMIT: The maximum number of devices to retrieve with each GET request

• SAVEL2: Retrieves L2 parent devices. This variable is valid only if you have enabled the ExtraHop system
to discover devices by IP address.

• ADVANCED_ONLY: Retrieves only devices that are currently under advanced analysis

• CRITICAL_ONLY: Retrieves only devices that have been identified as critical by the ExtraHop system

#!/usr/bin/python3

import http.client
import json
import csv
import datetime
import ssl
import sys

HOST = 'extrahop.example.com'

https://docs.extrahop.com/8.1/eh-admin-ui-guide/#ssl-certificate
https://docs.extrahop.com/8.1/eh-admin-ui-guide/#ssl-certificate

ExtraHop 8.1 ExtraHop REST API Guide 67

APIKEY = '123456789abcdefghijklmnop'
FILENAME = 'devices.csv'
LIMIT = 1000
SAVEL2 = False
ADVANCED_ONLY = False
CRITICAL_ONLY = False

headers = {}
headers['Accept'] = 'application/json'
headers['Authorization'] = 'ExtraHop apikey='+APIKEY

def getDevices(offset):
 conn = http.client.HTTPSConnection(HOST)
 conn.request('GET', '/api/v1/devices?limit=%d&offset=
%d&search_type=any'%(LIMIT,offset), headers=headers)
 resp = conn.getresponse()
 if resp.status == 200:
 devices = json.loads(resp.read())
 conn.close()
 return devices
 else:
 print("Error retrieving Device list")
 print(resp.status, resp.reason)
 resp.read()
 dTable = None
 conn.close()
 sys.exit()

continue_search = True
offset = 0
dTable = []
while (continue_search):
 new_devices = getDevices(offset)
 offset += LIMIT
 dTable += new_devices
 if (len(new_devices) > 0):
 continue_search = True
 else:
 continue_search = False

if (dTable != None):
 print (" - Saving %d devices in CSV file" % len(dTable))
 with open(FILENAME, 'w') as csvfile:
 csvwriter = csv.writer(csvfile,dialect='excel')
 csvwriter.writerow(list(dTable[0].keys()))
 w = 0
 s = 0
 for d in dTable:
 if ADVANCED_ONLY == False or (ADVANCED_ONLY == True and
 d['analysis'] == 'advanced'):
 if CRITICAL_ONLY == False or (CRITICAL_ONLY == True and
 d['critical'] == True):
 if d['is_l3'] | SAVEL2:
 w += 1
 d['mod_time'] =
 datetime.datetime.fromtimestamp(d['mod_time']/1000.0)
 d['user_mod_time'] =
 datetime.datetime.fromtimestamp(d['user_mod_time']/1000.0)
 d['discover_time'] =
 datetime.datetime.fromtimestamp(d['discover_time']/1000.0)
 csvwriter.writerow(list(d.values()))
 else:
 s += 1
 else:

ExtraHop 8.1 ExtraHop REST API Guide 68

 s += 1
 else:
 s += 1
 print(" - Wrote %d devices, skipped %d devices " % (w,s))

Note: If the script returns an error message that the SSL certificate verification failed, make sure
that a trusted certificate has been added to your ExtraHop system . Alternatively, you can
add the context option and send the request over TLSv1.2 to bypass certificate verification.
However, this method is not secure and is not recommended. The following code creates an
HTTP connection over TLSv1.2:

conn = httplib.HTTPSConnection(HOST,
 context=ssl.SSLContext(ssl.PROTOCOL_TLSv1_2))

Create a trusted SSL certificate through the REST API
By default, ExtraHop appliances include a self-signed SSL certificate. However, you can improve security
for your appliance by adding a trusted certificate signed by a certification authority (CA). You can create the
certificate signing request to send to your CA through the ExtraHop REST API. After you receive the signed
certificate, you can also add it to your ExtraHop system through the REST API.

Before you begin

• You must log in to the ExtraHop system with an account that has unlimited privileges to generate an
API key.

• You must have a valid API key to make changes through the REST API and complete the procedures
below. (See Generate an API key.)

• Familiarize yourself with the ExtraHop REST API Guide to learn how to navigate the ExtraHop REST
API Explorer.

Note: You can also perform the procedures in this topic through the ExtraHop Admin UI. For more
information, see the following topics:

• Create a certificate signing request from your ExtraHop system
• SSL Certificate

Create an SSL certificate signing request
To create a signed SSL certificate, you must send a certificate signing request to a trusted CA.

1. In a browser, navigate to the REST API Explorer.
The URL is the hostname or IP address of your ExtraHop Discover or Command appliance, followed by
/api/v1/explore/. For example, if your hostname is seattle-eda, the URL is https://seattle-
eda/api/v1/explore/.

2. Click Enter API Key and then paste or type your API key into the API Key field.
3. Click Authorize and then click Close.
4. Click ExtraHop and then click POST/extrahop/sslcert/signingrequest.
5. Click Try it out.

The JSON schema is automatically added to the SSL Certificate Signing Request Parameters parameter
text box.

6. In the SSL Certificate Signing Request Parameters parameter text box, specify the certificate signing
request fields.
a) In the common_name field, replace string with the fully qualified domain name of your ExtraHop

system.
b) In the subject_alternative_names field, add one or more alternative domain names or IP

addresses for your appliance.

https://docs.extrahop.com/8.1/eh-admin-ui-guide/#ssl-certificate
https://docs.extrahop.com/8.1/users-overview/#user-privileges
https://docs.extrahop.com/8.1/certificate-signing-request
https://docs.extrahop.com/8.1/eh-admin-ui-guide/#ssl-certificate

ExtraHop 8.1 ExtraHop REST API Guide 69

Note: The subject_alternative_names field is required. If your appliance has only
one domain name, duplicate the value from the common_name field. You must
include at least one subject alternative name with the type set to dns, but additional
alternative names can have the type set to ip or dns.

c) (Optional) In the email_address field, replace string with the email address of the certificate
owner.

d) (Optional) In the organization_name field, replace string with the registered legal name of
your organization.

e) (Optional) In the country_code field, replace string with the 2-character ISO country code of
the country that your organization is located in.

f) (Optional) In the state_or_province_name field, replace string with the name of the state or
that your organization is located in.

g) (Optional) In the locality_name field, replace string with the name of the city that your
organization is located in.

h) (Optional) In the organizational_unit_name field, replace string with the name of your
department within your organization.

The Value section should look similar to the following example:

{
 "subject": {
 "common_name": "example.com",
 "email_address": "admin@example.com",
 "organization_name": "Example",
 "country_code": "US"
 },
 "subject_alternative_names": [
 {
 "name": "www.example.com",
 "type": "dns"
 }
]
}

7. Click Send Request to create the signing request.
In the Server response section, the Response body displays the signing request in the pem field.

Next steps
Send the signing request to your CA to create your signed SSL certificate.

Important: The signing request contains escape sequences that represent line breaks (\n). Replace
each instance of \n with a line break before sending the request to your CA. You can
modify the PEM request manually in a text editor or automatically through a JSON
parsing utility, as shown in the following example command:

echo '<json_output>' | python -c 'import sys, json; print
 json.load(sys.stdin)["pem"]'

Replace the <json_output> variable with the entire JSON string returned in the
Response Body section.

Add a trusted SSL certificate to your ExtraHop system
You can add an SSL certificate signed by a trusted CA to your ExtraHop system through the REST API
Explorer.

1. In a browser, navigate to the REST API Explorer.
The URL is the hostname or IP address of your ExtraHop Discover or Command appliance, followed by
/api/v1/explore/. For example, if your hostname is seattle-eda, the URL is https://seattle-
eda/api/v1/explore/.

ExtraHop 8.1 ExtraHop REST API Guide 70

2. Click Enter API Key and then paste or type your API key into the API Key field.
3. Click Authorize and then click Close.
4. Click ExtraHop and then click PUT/extrahop/sslcert.
5. Click Try it out.
6. In the Certificate and Key field, paste the SSL certificate.

The certificate should look similar to the following text:

-----BEGIN CERTIFICATE-----
a0O8zvV4MlDhWX4e0VyvGAJx+9d4AqQB4Czy/P7z36CmHe2Y7PPdVSeWHNCQoJ0g
CnO42u2V9YKNFYRQejIJv8CxGVJKsdfV0iP0WnCvpZXkaBOYIrDvE5xn010WPUls
6qe3mCXsUK87i++mYuVDA1U0A5YVXRO2OOWIWy7P+MCU/cR/op3Jpekng2cxN4qD
FqGbtRpLdCuJ/xGWL1FFRHBg76+TbO+pxgZhiCtHYXfMKIaoPmDwsAqEtLbizz1W
mbMig9hs4QNcJ+aMNSnTZpkbeBR4a2nkGnQoYvnFOXV/nWzvfHmI4ydSH9g4I8qt
4ArqFepInvm70n07FYAKL6Mdd1i+7ieo9AqckltVzzKFzkakHm04214wtsYmle94
4HqIJ7p7NH5maXxttXMzHFlArbnjHWCl0gIv8lAu+IvLJ8aiGAb3zqveNz6ZAZ5j
PGAUsP+dVYV/8VjvqhkiP/1jWzUHwzpdlHbcD8qOkAF41fnbv+2EXqFJ096JSSiU
rqeJpgNuH3LbkT0KORAiLoGLMZKEKxF+3OpLVD7ox7NQh9pMdZlB8tcTbTmsvD8T
3L2tMVZssqYOANcidtd17t72VW4hzQURT1me5tGWxpN6od/q6B+FIvRq/7Vq0UE1
c2AG/om5UN/Vj3pUjXzq/B1IWUS9TicRcKdl5wrKEkPUGjK4w1R/87bj5HSn8nyd
lMCcOpLTokHj0B5+8O1ylNhVXNPlj3eY0n6OQOdClBqTDM0/4sB3XgeC/pjpleU3
3uot+wM/GoN/Dqb1LPt3BNpUQuCzSfmGSSOXiWELsEhz3ix/36a9eUWjfhmtPsW5
dne5Lf+G7cf+ebsRTb7R89GmgKzTpUl1KAzKINAebkT6WrWWljugpA0BcfANjS6o
mik4ZbY8d54UtA17evprr2+8UotIgVIrCbfLgA2DY8QOTCBYIFKJ3GZAedqRK9Sm
I2qdaB6QBczYNaVYSeCsBdHHw1+h7dBeqdUUwYKtmPW96/djj/6vJSXh9/UX/3c0
eqXG36w/lqJAYu8QtAydJsVC85IzqzikkX0f0KE315Doginpg59yix9dHD2sxLb1
X39BRpLkZ9nvW6ke2YHU/VKBVIxqSslukGoTUIcUtPJrtMQOwCi/EQQXbPK9a2pW
K51938h6OuLjNbDTFuxfhE4zITWHTgyAs2MNVR9+uDUiVJclX+CIPjhZzjyPqmD6
6uh8Sr3zndOMabqDquo69rMQyvclF0xOUMVgUw1Rb8Y=
-----END CERTIFICATE-----

Note: If you want the certificate to be signed with your own private key, you can include your
key after the SSL certificate, separated by a line break. However, we recommend that
you do not specify your own key; by default, the appliance will sign the certificate with
the private key on the appliance.

7. Click Send Request to add the certificate.

Create custom devices through the REST API
You can create custom devices through the REST API that track network traffic across multiple IP addresses
and ports. For example, you might want to add a custom device for each branch office. If you create the
devices through a script, you can read the list of devices from a CSV file. In this topic, we will demonstrate
methods for both the REST API and the ExtraHop REST API Explorer.

Before you begin

• You must log in to the ExtraHop system with an account that has unlimited privileges to generate an
API key.

• You must have a valid API key to make changes through the REST API and complete the procedures
below. (See Generate an API key.)

• Familiarize yourself with the ExtraHop REST API Guide to learn how to navigate the ExtraHop REST
API Explorer.

Create a custom device
You can create a custom device and associate the custom device with a list of IP addresses or CIDR blocks
through the POST /customdevices operation.

1. In the REST API Explorer, click Custom Device, and then click POST /customdevices.

ExtraHop 8.1 ExtraHop REST API Guide 71

2. In the body field, specify properties for the custom device that you want to create.
For example, the following body matches the custom device to the CIDR blocks 192.168.0.0/26,
192.168.0.64/27, 192.168.0.96/30, and 192.168.0.100/32:

{
 "description": "The location of our office in Washington",
 "name": "Seattle",
 "criteria": [
 {
 "ipaddr": "192.168.0.0/26"
 },
 {
 "ipaddr": "192.168.0.64/27"
 },
 {
 "ipaddr": "192.168.0.96/30"
 },
 {
 "ipaddr": "192.168.0.100/32"
 }
]
}

Python script example
This example python script creates custom devices by reading criteria from a CSV file. Each row of the CSV
file must contain the following columns in the specified order:

Name ID Description IP address or CIDR block

Note: The script does not accept a header row in the CSV file. There is no limit to the number of
columns in the table; each column after the first four specifies an additional IP address for
the device. The first four columns are required for each row.

For example, the following CSV list contains criteria for offices in France, Holland, and California:

France,francehq,The location of our office in
 France,192.168.0.103,192.168.0.105,192.168.0.101
Holland,hollandhq,The location of our office in Holland,192.168.0.102
California,californiahq,The location of our office in
 California,192.168.0.104,192.168.0.103

The script includes the following configuration variables that you must replace with information from your
environment:

• HOST: The IP address or hostname of the Discover appliance

• APIKEY: The API key

• CSV_FILE: The path of the CSV file relative to the location of the script file

#!/usr/bin/python3

import json
import http.client
import csv
import os.path

HOST = 'extrahop.example.com'
APIKEY = '123456789abcdefghijklmnop'
CSV_FILE = 'device_list.csv'

ExtraHop 8.1 ExtraHop REST API Guide 72

headers = {'Content-Type': 'application/json',
 'Accept': 'application/json',
 'Authorization': 'ExtraHop apikey=%s' % APIKEY}

def readCSV():
 devices = []
 with open(CSV_FILE, 'rt', encoding='ascii') as f:
 reader = csv.reader(f)
 for row in reader:
 device = {}
 ips = []
 device['name'] = row.pop(0)
 device['extrahop_id'] = row.pop(0)
 device['description'] = row.pop(0)
 for ip in row:
 ips.append({"ipaddr": ip})
 device['criteria'] = ips
 devices.append(device)
 return devices

def createDevice(device):
 conn = http.client.HTTPSConnection(HOST)
 conn.request('POST', '/api/v1/customdevices', body=json.dumps(device),
 headers=headers)
 resp = conn.getresponse()
 if resp.status != 201:
 print ("Could not create device: " + device['name'])
 print (" " + json.loads(resp.read())['error_message'])
 else:
 print ("Created custom device: " + device['name'])
 device_id = os.path.basename(resp.getheader('location'))

devices = readCSV()
for device in devices:
 createDevice(device)

Note: If the script returns an error message that the SSL certificate verification failed, make sure
that a trusted certificate has been added to your ExtraHop system . Alternatively, you can
add the context option and send the request over TLSv1.2 to bypass certificate verification.
However, this method is not secure and is not recommended. The following code creates an
HTTP connection over TLSv1.2:

conn = httplib.HTTPSConnection(HOST,
 context=ssl.SSLContext(ssl.PROTOCOL_TLSv1_2))

Create and assign a device tag through the REST API
The following Python script creates a device tag and then assigns that tag to all of the devices in a specified
subnet.

#!/usr/bin/env python

import httplib
import urllib
import json
import sys

Configuration Options:
host = "{HOST}"
apikey = "{API KEY}"

https://docs.extrahop.com/8.1/eh-admin-ui-guide/#ssl-certificate

ExtraHop 8.1 ExtraHop REST API Guide 73

tag_name = "MyTestTag"
subnet = "10.20.0.[0-9]+"
batch_limit = 100
headers = {'Accept': 'application/json',
 'Authorization': "ExtraHop apikey=%s" % apikey}
conn = httplib.HTTPSConnection(host)
 def execute_req(method, path, expected_code, failure_message, body=None):
"""
 Returns the body of a successful request,
 otherwise prints error and terminates
"""

conn.request(method, "/api/v1" + path, headers=headers, body=body)
resp = conn.getresponse()
if resp.status is not expected_code:
 print(failure_message)
 print(resp.read())
 sys.exit(1)
return resp

def execute_get(path, expected_code, failure_message):
 resp = execute_req("GET", path, expected_code, failure_message)
 return json.loads(resp.read())

def execute_create(path, body, expected_code, failure_message):
 """Returns ID of newly created resource"""
 resp = execute_req("POST", path, expected_code, failure_message, body)
 resp.read() # drain the response
 return int(resp.getheader("location").split("/")[-1])

First, search for the specified tag, by name
resp = execute_get("/tags", 200, "Unable to retrieve tags from ExtraHop")
tags = [tag for tag in resp if tag["name"] == tag_name]

if not tags:
 # tag is not found, create it
 body = json.dumps({"name": tag_name})
 tag_id = execute_create('/tags', body, 201, "Unable to create tag")
else:
 tag_id = tags[0]["id"]

query_params = {'limit': batch_limit,
 'search_type': 'ip address',
 'value': subnet}
query_string = urllib.urlencode(query_params)

Paginate device results, building up a list of all devices to assign
device_ids = []
offset = 0

while True:
 path = "/devices?" + query_string + ("&offset=%d" % offset)
 resp = execute_get(path, 200, "Unable to retrieve devices")
 if not resp:
 break

 device_ids += [device["id"] for device in resp]
 offset += batch_limit

Perform the assignments
resp = execute_req("POST", "/tags/%d/devices" % tag_id,
 204, "Unable to perform assignments",
 body=json.dumps({"assign": device_ids}))
resp.read() # drain the response

ExtraHop 8.1 ExtraHop REST API Guide 74

Check that assignments were successful
resp = execute_get("/tags/%d/devices" % tag_id,
 200, "Unable to retrieve tag assignments")
assigned_device_ids = [device["id"] for device in resp]

successful = set(device_ids).issubset(set(assigned_device_ids))
if successful:
 print("%d devices assigned to tag" % len(device_ids))
else:
 print("Unable to assign all devices to tag")

Query for metrics about a specific device through the REST API
The following Python script queries for metrics from an HTTP client device with the ID 9363 and prints the
response.

import httplib

headers = {'Content-Type': 'application/json',
 'Accept': 'application/json',
 'Authorization': 'ExtraHop apikey={API KEY}'
body = r"""{
 "cycle": "auto",
 "from": -1800000,
 "until": 0,
 "metric_category": "http_client",
 "metric_specs": [
 {
 "name": "req"
 }
],
 "object_ids": [
 9363
],
 "object_type": "device"
}"""
conn = httplib.HTTPSConnection('{HOST}')
conn.request('POST', '/api/v1/metrics', headers=headers, body=body)
resp = conn.getresponse()
print resp.status, resp.reason
print resp.read()

The following response shows entries for the device with ID 9363:

{
 "date": "Thu, 19 Nov 2015 23:20:07 GMT",
 "via": "1.1 localhost",
 "server": "Apache",
 "vary": "Accept-Encoding",
 "content-type": "application/json; charset=utf-8",
 "cache-control": "private, max-age=0",
 "connection": "Keep-Alive",
 "content-encoding": "gzip",
 "keep-alive": "timeout=45, max=44",
 "content-length": "277"
}

{
 "stats": [
 {

ExtraHop 8.1 ExtraHop REST API Guide 75

 "oid": 9363,
 "time": 1447973460000,
 "duration": 30000,
 "values": [
 2
]
 },
 {
 "oid": 9363,
 "time": 1447973490000,
 "duration": 30000,
 "values": [
 0
]
 },
 {
 "oid": 9363,
 "time": 1447973520000,
 "duration": 30000,
 "values": [
 1
]
 },
 {
 "oid": 9363,
 "time": 1447973550000,
 "duration": 30000,
 "values": [
 2
]
 }

Create, retrieve, and delete an object through the REST API
This example shows how you can create and successfully retrieve information about a device tag. Then,
after the device tags are deleted, the example shows how an attempt to retrieve information subsequently
fails.

The following example shows how to create a device tag called my_test_tag.

curl -i -X POST --header "Content-Type: application/json" \
--header "Accept: application/json" \
--header "Authorization: ExtraHop apikey={API KEY}" \
-d "{
\"name\": \"my_test_tag\"
}" "https://{HOST}/api/v1/tags"

A 201 status returns upon success with the following response headers, which display that the tag was
created, and provides the device tag location and ID of /api/v1/tags/1.

{
 "date": "Wed, 18 Nov 2015 20:24:13 GMT",
 "via": "1.1 localhost",
 "server": "Apache",
 "content-type": "text/plain; charset=utf-8",
 "location": "/api/v1/tags/1",
 "cache-control": "private, max-age=0",
 "connection": "Keep-Alive",
 "keep-alive": "timeout=45, max=88",
 "content-length": "0"

ExtraHop 8.1 ExtraHop REST API Guide 76

}

Next, the ID (1) is added to the following GET request, which returns a 200 status upon success and the
JSON representation of the retrieved tag:

curl -i -X GET --header "Accept: application/json" \
--header "Authorization: ExtraHop apikey={API KEY}" \
"https://{HOST}/api/v1/tags/1"
{
 "mod_time": 1447878253953,
 "id": 1,
 "name": "my_test_tag"
}

Next, the following example shows a DELETE request to remove the device tag from the system, which
returns a 204 status upon success:

curl -i -X DELETE --header "Accept: application/json" \
--header "Authorization: ExtraHop apikey={API KEY}" \
"https://{HOST}/api/v1/tags/1"

Finally, when another GET request is sent for that deleted device tag, the operation fails, and a 404 status is
returned upon failure, indicating that the tag is no longer available.

curl -i -X GET --header "Accept: application/json" \
--header "Authorization: ExtraHop apikey={API KEY}" \
"https://{HOST}/api/v1/tags/1"

Query the record log
The following request body queries the record log to retrieve 100 HTTP records where the method is GET
and the status code is 404.

{
 "filter": {
 "operator": "and",
 "rules": [
 {
 "field": "method",
 "operand": "GET",
 "operator": "="
 },
 {
 "field": "statusCode",
 "operand": "404",
 "operator": "="
 }
]
 },
 "from": -900000,
 "limit": 100,
 "types": [
 "~http"
]
}

	Introduction to the ExtraHop REST API
	ExtraHop API requirements

	Access and authenticate to the ExtraHop REST API
	Privilege levels
	Manage API key access
	Generate an API key
	Configure cross-origin resource sharing (CORS)
	Set up an SSL certificate

	Learn about the REST API Explorer
	Open the REST API Explorer
	View operation information
	Identify objects on the ExtraHop system

	ExtraHop API resources
	Activity group
	Activity Map
	Alert
	Alert severity levels

	Analysis Priority
	APIKey
	Appliance
	Application
	Audit log
	Auth
	Bundle
	Cloud
	Custom device
	Customization
	Dashboards
	Device
	Operand values for device search
	Supported time units

	Device group
	Supported time units
	Operand values for device groups

	Detections
	Email group
	Exclusion intervals
	ExtraHop
	License
	Metrics
	Supported time units

	Network
	Network locality entry
	Node
	Observations
	Open Data Stream
	Packet capture
	Packet Search
	Filter packets with Berkeley Packet Filter syntax
	Add a filter with BPF syntax
	Supported BPF syntax

	Page
	Pairing
	Record Log
	Operand values in record queries
	Supported time units

	Report
	Running config
	Software
	SSL decrypt key
	Support pack
	Tag
	Threat Collection
	Trigger
	Advanced trigger options

	User
	User group
	VLAN
	Whitelist (Watchlist)

	ExtraHop REST API examples
	Upgrade ExtraHop firmware through the REST API
	Upgrade ExtraHop firmware with cURL
	Python script example
	Upgrading Explore appliances

	Change a dashboard owner through the REST API
	Retrieve the dashboard IDs
	Change the dashboard owner
	Python script example

	Extract the device list through the REST API
	Retrieve the device list with the cURL command
	Python script example

	Create a trusted SSL certificate through the REST API
	Create an SSL certificate signing request
	Add a trusted SSL certificate to your ExtraHop system

	Create custom devices through the REST API
	Create a custom device
	Python script example

	Create and assign a device tag through the REST API
	Query for metrics about a specific device through the REST API
	Create, retrieve, and delete an object through the REST API
	Query the record log

