ExtraHop Addy User Guide
Anomaly detection with ExtraHop Addy
The ExtraHop Addy™ service is a cloud-based service that applies machine learning techniques to automatically determine what is normal versus unusual behavior in your IT environment. Unlike other machine learning solutions that rely on logs or agent data, the Addy service applies machine learning technology to your wire data without requiring you to configure anything.
Addy learns about normal network behavior by analyzing the data stored on your Discover appliance. After Addy is activated, you can then browse detected performance and security anomalies in the ExtraHop Web UI and investigate root causes for issues on your network.
Overall, Addy offers the following types of help:
- Uncover hidden issues before they create problems for your users
- Collect high-quality, actionable data to identify root causes of anomalies
- Find unknown performance issues, security issues, or infrastructure quirks
- Gain deeper insight into your network behavior
Important: | Addy does not analyze sensitive information and data types. For more information, download ExtraHop Addy: Security Overview. |
Here are important considerations about anomaly detection with Addy:
- You must have an ExtraHop Addy service license.
- You must have full system privileges, access to the Admin UI, and access through any firewalls to connect a Discover appliance to the Addy service through ExtraHop Cloud Services. For more information, see Connect to the ExtraHop Addy service.
- You must have at least four weeks of wire data metrics stored on your Discover appliance before Addy can detect anomalies.
- On a Command appliance, you can access anomalies on a connected Discover appliance if that Discover appliance is connected to Addy.
Connect to the ExtraHop Addy service
The ExtraHop Addy service is a cloud-based service that applies machine learning techniques to automatically determine what is normal behavior and what is unusual behavior in your IT environment. After you acquire a license for the Addy service, the license status and ExtraHop Cloud Services settings are automatically updated on your Discover appliance.
Before you begin
- You must apply the Addy license before you can connect to the service. See the License FAQ for more information.
- You must have full system privileges to access the ExtraHop Admin UI and to connect to ExtraHop Cloud Services.
- Log into the ExtraHop Admin UI on the Discover appliance.
- In the Network Settings section, click ExtraHop Cloud Services.
- Click Terms and Conditions to read the content.
- After becoming familiar with the Addy service terms and conditions, select the checkbox.
- Click Connect to ExtraHop Cloud Services.
If the connection fails, there might be an issue with your firewall rules. See Troubleshoot your connection to the Addy service to identify and resolve the issue. If connection problems persist, contact ExtraHop Support for help by creating a case on the Customer Portal (requires login).
Anomaly categories
Addy detects security or IT operations anomalies depending on the type of Addy license you have.
Security anomalies
The best way to stop attackers from stealing data or wreaking havoc on your network is to detect attacks before they cause harm. Even though attackers regularly develop new methods for evading detection, most attacks tend to follow familiar patterns or phases. The ExtraHop Addy service can detect anomalies associated with different phases of an attack. Addy tells you when a security risk occurred, which attack phase the risk is associated with, and which devices were affected by the risk.
Note: | This topic only applies to the ExtraHop Reveal(x) system edition. |
Here are some important considerations about Addy security anomalies:
- You must have an ExtraHop Reveal(x) license to view security anomalies.
- Addy provides you with high-quality, actionable data about security risks. But these anomalies do not replace decision-making or expertise about your network. Always investigate anomalies to determine the root cause of the unusual behavior and when to take action.
When you log into the Web UI of your Security Edition and click Anomalies, an overview page appears with information about all the security anomalies detected during the selected time interval.

Below the timeline chart, an attack chain highlights the number of anomalies that are associated with a different attack phase, as shown in the following figure.

Important: | Multiple anomalies in the attack chain can be associated with an attack. Anomalies associated with attack phases can be detected in any order. |
Addy detects the following security risk anomalies:
Command and control
An attacker has infiltrated a device on your network, and that device attempts to phone home to the attacker’s command and control (C&C) server. The C&C server can then send malware or a payload to the device to gain control of that device. Addy detects when an internal device is frequently connecting to a suspicious server or client outside of your network.Reconnaissance
An attacker has infiltrated a device on your network and is trying to learn about your network. Specifically, the attacker is looking for potential targets and associated vulnerabilities. Addy detects when an internal device is performing suspicious scans of devices, ports, services, applications, or files on your network.Lateral movement
An attacker is gaining access to multiple devices within your network by determining valid user credentials. The attacker can then move between devices, or move data between devices on your network. Addy detects unusual movement in the network and unusual activity around the movement of data between devices.IT operations anomalies
Addy is always on and always learning about network behavior across your IT infrastructure. Addy automatically surfaces network, application, and infrastructure problems and their root causes, so you can immediately focus on issues that matter.
Here are some important considerations about this type of anomaly:
- You cannot view IT operations anomalies if you have a ExtraHop Reveal(x) license.
- The Addy service provides you with high-quality, actionable data about potential performance and operation issues. But these anomalies do not replace decision-making or expertise about your network. Always investigate anomalies to determine the root cause of the unusual behavior and when to take action.
Addy detects anomalies in the following operational categories:
Authentication and authorization
Addy detects unsuccessful attempts by users, clients, and servers to log in or access resources.Database
Addy evaluates a suite of database protocols to determine whether your applications or users might be experiencing database access problems.Desktop and app virtualization
Addy detects when there are long Citrix load times or poor quality sessions for end users. Addy also evaluates SSH (secure shell) activity.Network infrastructure
Addy evaluates whether there are unusual events over the TCP, DNS, and DHCP protocols.Service degradation
Addy analyzes key protocols for Voice over IP (VoIP) and email communications within a network to detect service issues or performance problems.Find and filter anomalies
After activating Addy, a top menu item appears for anomalies. To browse anomalies detected by Addy, log into the Web UI and click Anomalies at the top of the page. You can then filter anomalies by time interval, protocol, category, applications, or devices. Anomalies are sorted by their start time and the most recent anomaly is listed first.
Note: |
Configuring an anomaly alert from the Alerts page lets you monitor alerts or receive email notifications when a specific anomaly is detected. For more information, see the following topics:
|
The following steps show you how to find and filter anomalies:
Next steps
Interpret anomalies
The Anomalies page displays the total number of anomalies for the selected time interval and details about each detected anomaly. The following sections show you what information you can learn from anomalies.
View total anomalies over time
The Timeline chart provides a summary of detected anomalies (y-axis) over time (x-axis) for the selected time interval. Each bar in the chart represents the total number of concurrent, active anomalies that were detected during a specific time period. Look for the tallest bar to determine when the most anomalies occurred in a time period.
Hover over a bar to view information, such as date, time, and the number of detected anomalies for a specific time period.

Click and drag across an area on the chart (which will become highlighted in green) to zoom in on a specific time range. The time interval in the Discover or Command appliance dynamically updates to match the new time range in the chart, and details about each anomaly that was detected in that time range are displayed below the chart.

View details for individual anomalies
Each anomaly provides detailed information about the type of issue that occurred, when the issue occurred, and the source of the issue. Individual anomalies are listed below the Timeline chart, and they are sorted by their start time. The most recent anomaly is listed first.
The following figure shows you what type of information is provided within an individual anomaly:

- Title
- The title includes the anomalous metric and the device or application name that is the cause of the anomaly. Click the title to share an anomaly.
- Description
- The description provides information about what the anomaly means. For most anomalies, Addy
automatically surfaces detail metrics identified with Addy's machine learning capabilities, so
you can immediately begin your investigation.
For more information, see Investigate anomalies with Addy.
- Duration
- The duration of the anomaly indicates how long the anomalous value was detected by
Addy.
The minimum duration of an anomaly is one hour, because Addy detects anomalies by analyzing metric data with 1-hour granularity. If the duration value is displayed as ONGOING, the anomalous metric is in the process of being detected.
- Sparkline
- Sparklines are simple line charts that show you the metric behavior that led up to the anomaly. The sparkline charts display a snapshot of metric data from the time frame around the duration of the detected anomaly (such as 6 hours), and not the overall time interval from the top of the page (such as the last 7 days).
- Peak Value
- The peak value is the maximum value from observed data that deviated from expected ranged for the duration of the anomaly.
- Expected Range
- The expected range includes values that represent a normal background level of activity, which is calculated based on 4 weeks of data. The expected range is the basis for comparison with observed values to detect changes in metric activity.
- Deviation
- A deviation is the quantity calculated by the Addy machine learning engine to indicate the extent of change from an expected range.
Investigate anomalies with Addy
When you find an interesting anomaly, you want to better understand the root cause. You can begin your investigation by reviewing information revealed by automated investigation or by navigating to a protocol page.
Addy automated investigation
Addy performs an automated investigation for most anomalies, which means that you can view detail metrics in the anomaly description to immediately learn what contributed to an issue.
In the following figure, you can see which client, server, and URI are linked to an HTTP 404 anomaly.

When multiple factors contribute to an anomaly, you can also see the percentage of their contribution to the anomaly. For example, the following figure shows the top two DNS servers that sent an excessive number of DNS errors to a client during the detected anomaly.

Note: | Automated investigation is not available for server processing time anomalies. For these anomalies, you can investigate anomalies from protocol pages in the Discover or Command appliance. |
Navigate to a protocol page
If you want to further investigate anomalous metrics, you can navigate to a protocol page where you have access to additional metrics and tools, such as activity maps.
Next steps
From a protocol page, you can then choose one of the following options to further investigate metric data:
Best practices for investigating anomalies
Addy provides you with high-quality, actionable data about anomalies—but does not replace decision-making or expertise about your network. The following best practices explain how to determine which anomalies are worth further investigation and when to take action.
- Change the time interval to see when anomalies occurred
- Learn if anomalies occurred before, after, or during a reported problem. For example, does
the time frame of the anomaly coincide with a reported issue, such as slow load times or login
times? You can also compare anomalies from the past month to the current date, which gives you
a sense of whether the occurrence or severity of anomalies is changing over time.
For more information, see Find and filter anomalies.
- Create an anomaly alert
- You can configure an alert to receive email notifications when an anomaly occurs. Anomaly
alerts also help you quickly find anomalies for a specific device or application on the Alert History page.
For more information, see Configure Addy anomaly alert settings.
- Filter anomalies by protocol
- Filter by protocol to quickly monitor critical protocols with a role in security, commerce,
or communication processes.
For example, an FTP 530 error anomaly might indicate that someone is trying to gain unauthorized access to information on your network. Or Citrix server and client latency anomalies might indicate that users are experiencing long load times for their roaming desktop profiles.
Selecting different protocols can also show you how anomalies correlate to each other. An anomalous HTTP response time followed immediately by an anomalous CIFS server processing time might suggest that web servers are dependent on how quickly your file storage servers can send and receive file data.
For more information, see Find and filter anomalies.
Share an anomaly
If you find an anomaly that you want to share, you can send the URL from the anomaly detail page to other ExtraHop users.
Here are some important considerations about sharing anomalies:
- You must copy and share the entire URL.
- To view the anomaly, a user must have access to the Discover appliance where the license was detected.
The following steps show you how to select and share an anomaly:
Next steps
- Configure an anomaly alert to receive email notifications about an anomaly.
Appendix
The following section contains reference information about the Addy service.
How the ExtraHop Addy service works
This section provides some background information on how the ExtraHop Addy service identifies anomalies.
Anomalies are unexpected deviations from normal patterns in device or application behavior. Addy detects anomalies from stored Discover appliance data with a proprietary algorithm that combines time series decomposition, unsupervised learning, heuristics, and ExtraHop's unique domain expertise. This combination helps to ensure that detected anomalies are both accurate and actionable. By detecting an anomaly as soon as it happens, you can identify and resolve a potential issue before it becomes a larger problem. You can also review historical anomaly data to investigate issues related to known security or network outage events.
In most network monitoring tools, anomalies are detected through manually-configured alerts and trend models for individual devices. However, as your network changes—because of hardware reconfigurations, organization mergers, business growth, or the addition of applications to your network—these types of alerts and models can become quickly outdated and potentially inaccurate. Addy automatically delivers consistent and accurate results about anomalous metrics and protocols without requiring manual configuration for individual devices. The Addy machine learning engine analyzes the historical behavior of individual devices, and automatically adapts to each device across time when there are changes to the expected range of data in your network.
Here is how Addy anomaly detection generally works: the metrics that the Addy machine learning engine analyzes come from wire data that is collected by your Discover appliance. The Discover appliance processes this data, generates metrics, and associates the metric data with protocols, devices, and applications. Addy retrieves a subset of protocol metrics from the Discover appliance to analyze and report results about detected anomalies.
- Observed data, collected in real-time by the Discover appliance
- Expected range data, calculated from four weeks of historical data collected by the Discover appliance
- Threshold values, which are automatically adjusted by the algorithm based on historical metric data and heuristics defined by the IT networking domain experts at ExtraHop
Note: | If you need to define a specific threshold value for an anomaly, which might be associated with a service level agreement (SLA) for example, we recommend manually configuring an alert in the Discover appliance. |
Essentially, an anomaly is detected when observed data deviates from the expected range of data by a significant amount. You can then view analysis results about anomalies on the Anomalies page in the Web UI of the Discover appliance. For each anomaly, Addy provides the measured deviation (which is the difference between the observed value and the expected range), the anomaly value, and the expected range of normal metric values at the time of the anomaly.
Addy also provides anomalous 50th percentile or 75th percentile values for a subset of metrics that account for server processing time.
Thank you for your feedback. Can we contact you to ask follow up questions?