
© 2025ExtraHop Networks, Inc. All rights reserved.

Extract the device list through the REST API
Published: 2025-02-12

The ExtraHop REST API enables you to extract the list of devices discovered by the sensor or console. By
extracting the list with a REST API script, you can export the list in a format that can be read by third-party
applications, such as a configuration management database (CMDB). In this topic, we show methods for
extracting a list through both the cURL command and a Python script.

Before you begin

• For sensors and the ExtraHop console, you must have a valid API key to make changes through the
REST API and complete the procedures below. (See Generate an API key .)

• For RevealX 360, you must have valid REST API credentials to make changes through the REST API
and complete the procedures below. (See Create REST API credentials .)

Retrieve the device list with the cURL command
The device list includes all device metadata, such as MAC addresses and device IDs. However, you can
filter the list of devices with a JSON parser to extract the specific information you want to export. In this
example, the device list is retrieved and then filtered with the jq parser to only extract the display name of
each device.

Note: The following procedure is not compatible with the RevealX 360 REST API. To retrieve the
device list from RevealX 360, see Retrieve the device list from RevealX 360 with the cURL
command.

Before you begin

• The cURL tool must be installed on your machine.
• The jq parser must be installed on your machine. For more information, see https://stedolan.github.io/

jq/ .

Open a terminal application and run the following command, where YOUR_KEY is the API for your user
account, HOSTNAME is the hostname of your sensor or console, and MAX_DEVICES is a number large
enough to be more than the total number of devices discovered by your system:

curl -s -X POST "https://HOSTNAME/api/v1/devices/search" --header
 "accept: application/json" --header "Authorization: ExtraHop
 apikey=YOUR_KEY" --header "Content-Type: application/json" -d
 "{ \"active_from\": 1, \"active_until\": 0, \"limit\": MAX_DEVICES}" |
 jq -r '.[] | .display_name'

Note: If the command returns no results, make sure that a trusted certificate has been added
to your ExtraHop system . Alternatively, you can add the --insecure option to
retrieve the device list from an ExtraHop system without a trusted certificate; however,
this method is not secure and not recommended.

Tip: You can append the select(.analysis == "LEVEL") option to filter results by
analysis level. For example, the following command limits the results to include only
devices that are selected for advanced analysis:

curl -s -X POST "https://HOSTNAME/api/v1/devices/search" --
header "accept: application/json" --header "Authorization:
 ExtraHop apikey=YOUR_KEY" --header "Content-Type: application/
json" -d "{ \"active_from\": 1, \"active_until\": 0, \"limit\":
 1000000000}" | jq -r '.[] | select(.analysis == "advanced")
 | .display_name'

https://docs.extrahop.com/25.2/rest-api-guide/#generate-an-api-key
https://docs.extrahop.com/25.2/rx360-rest-api/#create-rest-api-credentials
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://docs.extrahop.com/25.2/eh-admin-ui-guide/#tls-certificate
https://docs.extrahop.com/25.2/eh-admin-ui-guide/#tls-certificate

Extract the device list through the REST API 2

Tip: You can append the select(.critical == BOOLEAN) option to filter results by the
critical field. For example, the following command limits the results to include only devices
that are identified as critical by the ExtraHop system:

curl -s -X POST "https://HOSTNAME/api/v1/devices/search" --
header "accept: application/json" --header "Authorization:
 ExtraHop apikey=YOUR_KEY" --header "Content-Type: application/
json" -d "{ \"active_from\": 1, \"active_until\": 0, \"limit
\": 1000000000}" | jq -r '.[] | select(.critical == true)
 | .display_name'

Tip: You can append the select(.cloud_instance_name != null) option to filter
results by the cloud instance name field. For example, the following command limits the
results to include only devices with a cloud instance name:

curl -s -X POST "https://HOSTNAME/api/v1/devices/search" --
header "accept: application/json" --header "Authorization:
 ExtraHop apikey=YOUR_KEY" --header "Content-Type: application/
json" -d "{ \"active_from\": 1, \"active_until\": 0, \"limit
\": 1000000000}" | jq -r '.[] | select(.cloud_instance_name !=
 null) | .cloud_instance_name'

Retrieve the device list from RevealX 360 with the cURL command
The device list includes all device metadata, such as MAC addresses and device IDs. However, you can
filter the list of devices with a JSON parser to extract the specific information you want to export. In this
example, the device list is retrieved and then filtered with the jq parser to only extract the display name of
each device.

Note: The following procedure is only compatible with the RevealX 360 REST API. To retrieve
the device list from sensors and the ExtraHop console, see Retrieve the device list with the
cURL command.

Before you begin

• The cURL tool must be installed on your machine.
• The jq parser must be installed on your machine. For more information, see https://stedolan.github.io/

jq/ .

1. Open a terminal application and run the following command, where REVEAL_X_360_REST_API is the
hostname of the RevealX 360 API. This hostname is displayed in RevealX 360 on the API Access page
under API Endpoint. The hostname does not include the /oauth2/token:

HOST="https://REVEAL_X_360_REST_API"

2. Run the following command, where YOUR_ID is the ID of the REST API credentials:

ID="YOUR_ID"

3. Run the following command, where YOUR_SECRET is the secret of the REST API credentials:

SECRET="YOUR_SECRET"

4. Run the following command:

AUTH=$(printf "$ID:$SECRET" | base64 --wrap=0)

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

Extract the device list through the REST API 3

5. Run the following command:

ACCESS_TOKEN=$(curl -s \
 -H "Authorization: Basic ${AUTH}" \
 -H "Content-Type: application/x-www-form-urlencoded" \
 --request POST \
 ${HOST}/oauth2/token \
 -d "grant_type=client_credentials" \
 | jq -r '.access_token')

6. Run the following command, where MAX_DEVICES is a number large enough to be more than the total
number of devices discovered by your system:

curl -s -X GET -H "Authorization: Bearer ${ACCESS_TOKEN}" "$HOST/api/
v1/devices?active_from=1&active_until=0&limit=MAX_DEVICES" | jq -r '.[]
 | .display_name'

Tip: You can append the select(.analysis == "LEVEL") option to filter results by
analysis level. For example, the following command limits the results to include only
devices that are selected for advanced analysis:

curl -s -X GET -H "Authorization: Bearer
 ${ACCESS_TOKEN}" "$HOST/api/v1/devices?
active_from=1&active_until=0&limit=10000000000" | jq -r '.[] |
 select(.analysis == "advanced") | .display_name'

Tip: You can append the select(.critical == BOOLEAN) option to filter results by the
critical field. For example, the following command limits the results to include only devices
that are identified as critical by the ExtraHop system:

curl -s -X GET -H "Authorization: Bearer
 ${ACCESS_TOKEN}" "$HOST/api/v1/devices?
active_from=1&active_until=0&limit=10000000000" | jq -r '.[] |
 select(.critical == true) | .display_name'

Tip: You can append the select(.cloud_instance_name != null) option to filter
results by the cloud instance name field. For example, the following command limits the
results to include only devices with a cloud instance name:

curl -s -X GET -H "Authorization: Bearer
 ${ACCESS_TOKEN}" "$HOST/api/v1/devices?
active_from=1&active_until=0&limit=10000000000" | jq -r '.[] |
 select(.cloud_instance_name != null) | .cloud_instance_name'

Retrieve and run the example Python script
The ExtraHop GitHub repository contains an example Python script that extracts the device list, including
all device metadata, and writes the list to a CSV file in the same directory as the script.

1. Go to the ExtraHop code-examples GitHub repository and download the extract_device_list/
extract_device_list.py file to your local machine.

2. In a text editor, open the extract_device_list.py file and replace the configuration variables
with information from your environment.

• For sensors and the ExtraHop console, specify the following configuration variables:

• HOST: The IP address or hostname of the sensor or the ExtraHop console.

• API_KEY: The API key.

https://github.com/ExtraHop/code-examples/tree/main/extract_device_list

Extract the device list through the REST API 4

• CSV_FILE: The file that contains the list of device groups.

• FILENAME: The file that output will be written to

• LIMIT: The maximum number of devices to retrieve with each GET request

• SAVEL2: Retrieves L2 parent devices. This variable is valid only if you have enabled the
ExtraHop system to discover devices by IP address.

• ADVANCED_ONLY: Retrieves only devices that are currently under advanced analysis

• HIGH_VALUE_ONLY: Retrieves only devices that are considered high value
• For RevealX 360, specify the following configuration variables:

• HOST: The hostname of the RevealX 360 API. This hostname is displayed in the RevealX 360
API Access page under API Endpoint. The hostname does not include the /oauth2/token.

• ID: The ID of the RevealX 360 REST API credentials.

• SECRET: The secret of the RevealX 360 REST API credentials.

• CSV_FILE: The file that contains the list of device groups.

• FILENAME: The file that output will be written to

• LIMIT: The maximum number of devices to retrieve with each GET request

• SAVEL2: Retrieves L2 parent devices. This variable is valid only if you have enabled the
ExtraHop system to discover devices by IP address.

• ADVANCED_ONLY: Retrieves only devices that are currently under advanced analysis

• HIGH_VALUE_ONLY: Retrieves only devices that are considered high value
3. Run the following command:

python3 extract_device_list.py

Note: If the script returns an error message that the TLS certificate verification failed, make
sure that a trusted certificate has been added to your sensor or console . Alternatively,
you can add the verify=False option to bypass certificate verification. However, this
method is not secure and is not recommended. The following code sends an HTTP GET
request without certificate verification:

requests.get(url, headers=headers, verify=False)

https://docs.extrahop.com/25.2/eh-admin-ui-guide/#tls-certificate

	Extract the device list through the REST API
	Retrieve the device list with the cURL command
	Retrieve the device list from RevealX 360 with the cURL command
	Retrieve and run the example Python script

