
© 2025ExtraHop Networks, Inc. All rights reserved.

Add device cloud instance properties through
the REST API
Published: 2025-03-18

Device cloud properties enable you to view information about your cloud environment in the ExtraHop
system. You can identify the cloud instance name, type, and ID of a device along with the cloud account
that owns the device and the ID of the Virtual Private Cloud that the device is in.

This guide provides instructions for adding an observation through the ExtraHop API Explorer, an AWS
CloudFormation template, an AWS Lambda function, and a Python script for Microsoft Azure. If you update
cloud properties automatically through the REST API, you can continuously retrieve information from your
cloud provider to make sure that your cloud property information is always up to date.

Add cloud instance properties through the ExtraHop API Explorer
Before you begin

• For sensors and the ExtraHop console, you must have a valid API key with full write privileges or
higher. (See Generate an API key .)

• For RevealX 360, you must have valid REST API credentials with full write privileges or higher. (See
Create REST API credentials .)

1. In a browser, navigate to the REST API Explorer.
The URL is the hostname or IP address of your sensor or console, followed by /api/v1/explore/.
For example, if your hostname is seattle-eda, the URL is https://seattle-eda/api/v1/
explore/.

2. Enter your REST API credentials.

• For sensors and the ExtraHop console, click Enter API Key and then paste or type your API key
into the API Key field.

• For RevealX 360, click Enter API Credentials and then paste or type the ID and secret of your API
credentials into the ID and Secret fields.

3. Click Authorize and then click Close.
4. Find the ID of the device by searching for the device MAC address.

a) Click Device and then click POST /devices/search.
b) Click Try it out.
c) In the body field, specify the following JSON, replacing MACADDRESS with the MAC address of

your cloud device:

{
 "filter": {
 "field": "macaddr",
 "operand": "MACADDRESS",
 "operator": "="
 }
}

d) Click Send Request.
e) In the Response body section, view and record the value of the id field for each device that is

returned.
5. Add the cloud device metadata.

a) Click PATCH /devices/{id}.
b) Click Try it out.

https://docs.extrahop.com/25.2/users-overview/#user-privileges
https://docs.extrahop.com/25.2/rest-api-guide/#generate-an-api-key
https://docs.extrahop.com/25.2/users-overview/#user-privileges
https://docs.extrahop.com/25.2/rx360-rest-api/#create-rest-api-credentials

Add device cloud instance properties through the REST API 2

c) In the id field, specify an ID.
d) In the body field, specify the following JSON, replacing the string values with properties from

your cloud environment:

{
 "cloud_account": "string",
 "cloud_instance_id": "string",
 "cloud_instance_name": "string",
 "cloud_instance_type": "string",
 "vpc_id": "string"
}

e) Click Send Request.

Add AWS properties to RevealX 360 with CloudFormation
You can add AWS device cloud instance properties to RevealX 360 with a CloudFormation template that
is publicly available on Amazon S3. The CloudFormation template creates a Lambda function that retrieves
AWS EC2 instance properties and sends them to RevealX 360 through the REST API. The Lambda function
maps network interfaces of EC2 instances to devices discovered on the ExtraHop system by MAC address.

Here are some important considerations about the Lambda function:

• The AWS EventBridge service runs the Lambda function every 30 minutes.
• The function only imports cloud instance properties for EC2 instances.
• You must deploy the CloudFormation template in each AWS account that you want to import

properties from.
• You can only deploy the function in the following AWS regions:

• US East (Ohio)
• US East (Northern Virginia)
• US West (Oregon)
• US West (Northern California)

For information about adding AWS properties outside of these regions, see Add AWS properties to
RevealX Enterprise with Lambda.

• RevealX Enterprise does not support the CloudFormation template. For information about importing
properties into RevealX Enterprise, see Add AWS properties to RevealX Enterprise with Lambda.

Before you begin
You must have valid REST API credentials with full write privileges or higher.

1. Navigate to the CloudFormation page in AWS.
2. Create a CloudFormation stack from the following Amazon S3 URL:

https://s3.us-east-2.amazonaws.com/ct.s.extrahoplabs/Public/MDS.yml

3. Configure the following variables:

API ID
The ID of your RevealX 360 REST API credentials.

API Secret
The secret of your RevealX 360 REST API credentials.

Tenant Name
The subdomain of your RevealX 360 console.

For more information about configuring a CloudFormation stack, see the AWS documentation .

https://docs.extrahop.com/25.2/rx360-rest-api/#create-rest-api-credentials
https://docs.extrahop.com/25.2/users-overview/#user-privileges
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/GettingStarted.Walkthrough.html#GettingStarted.Walkthrough.createstack

Add device cloud instance properties through the REST API 3

Add AWS properties to RevealX Enterprise with Lambda
You can add AWS device cloud instance properties to RevealX Enterprise with an example Python script.
The script maps network interfaces of EC2 instances to devices discovered on the ExtraHop system by
MAC address.

Note: For information about importing AWS properties into RevealX 360, see Add AWS properties
to RevealX 360 with CloudFormation.

The script is designed to run as a Lambda function within AWS. Here are some important considerations for
running the script in AWS:

• The script is designed to run on a set time interval. Each time the script is run, it scans each instance
on the VPC and updates the corresponding devices in the ExtraHop system. For information about
configuring a Lambda function to run periodically, see the AWS tutorial here .

• The Lambda function must be able to access resources on your VPC. For more information, see the
AWS tutorial here .

• The Lambda function must have list and read access to the DescribeInstances action for the EC2
service. For more information, see the AWS tutorial here .

Note: If the script returns an error message that the TLS certificate verification failed, make sure
that a trusted certificate has been added to your sensor or console . Alternatively, you can
add the verify=False option to bypass certificate verification. However, this method
is not secure and is not recommended. The following code sends an HTTP GET request
without certificate verification:

requests.get(url, headers=headers, verify=False)

Before you begin

• You must have a valid API key with full write privileges or higher.

1. Go to the ExtraHop code-examples GitHub repository and download the
add_cloud_props_lambda/add_cloud_props_lambda.py file to your local machine.

2. In a text editor, open the add_cloud_props_lambda.py file and replace the following configuration
variables with information from your environment:

• HOSTNAME: The private IP address or hostname of the sensor or console EC2 instance.

• APIKEY: The ExtraHop API key.
3. Add the add_cloud_props_lambda.py file to a zip file with the requests Python module.

The script imports the requests Python module, which is not available to Lambda functions by
default. For information about creating a zip file to import third-party libraries into Lambda, see the
AWS documentation .

4. In AWS, create a Lambda function.
For more information about creating Lambda functions, see the AWS documentation .

5. On the Lambda function page, click Actions and select Upload a .zip file.
6. Select the zip file you created.

Add Azure properties to ExtraHop with Python
The ExtraHop GitHub repository contains an example Python script that imports Azure device properties
into the ExtraHop system. The script assigns cloud device properties to every device discovered by the
ExtraHop system with a MAC address that belongs to an Azure VM network interface. The script is
designed to be run on a set time interval. Each time the script is run, it scans each VM and updates the
corresponding devices in ExtraHop.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/RunLambdaSchedule.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.extrahop.com/25.2/eh-admin-ui-guide/#tls-certificate
https://docs.extrahop.com/25.2/rest-api-guide/#generate-an-api-key
https://docs.extrahop.com/25.2/users-overview/#user-privileges
https://github.com/ExtraHop/code-examples
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html#python-package-dependencies
https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html

Add device cloud instance properties through the REST API 4

The script requires the following modules from the Azure Python SDK:

• azure.mgmt.compute
• azure.mgmt.network
• azure.common.credentials

The script also requires you to have configured Azure authentication credentials in the following
environment variables on the machine that runs the script:

• AZURE_SUBSCRIPTION_ID
• AZURE_CLIENT_ID
• AZURE_CLIENT_SECRET
• AZURE_TENANT_ID

For information about generating these credentials, see the Azure documentation .

Important: The example python script authenticates to the sensor or console through an API
key, which is not compatible with the RevealX 360 REST API. To run this script with
RevealX 360, you must modify the script to authenticate with API tokens. See the
py_rx360_auth.py script in the ExtraHop GitHub repository for an example of how to
authenticate with API tokens.

1. Go to the ExtraHop code-examples GitHub repository and download the
add_cloud_props_azure/add_cloud_props_azure.py file to your local machine.

2. In a text editor, open the add_cloud_props_azure.py file and replace the following configuration
variables with information from your environment:

• HOSTNAME: The IP address or hostname of the sensor or console.

• APIKEY: The ExtraHop API key.
3. Run the following command:

python3 add_cloud_props_azure.py

Note: If the script returns an error message that the TLS certificate verification failed, make
sure that a trusted certificate has been added to your sensor or console . Alternatively,
you can add the verify=False option to bypass certificate verification. However, this
method is not secure and is not recommended. The following code sends an HTTP GET
request without certificate verification:

requests.get(url, headers=headers, verify=False)

https://pypi.org/project/azure-mgmt-compute/
https://pypi.org/project/azure-mgmt-network/
https://pypi.org/project/azure-common/
https://docs.microsoft.com/en-us/azure/developer/python/configure-local-development-environment?tabs=cmd#create-a-service-principal-and-environment-variables-for-development
https://github.com/ExtraHop/code-examples/tree/main/py_rx360_auth
https://github.com/ExtraHop/code-examples/tree/main/add_cloud_props_azure
https://docs.extrahop.com/25.2/eh-admin-ui-guide/#tls-certificate

	Add device cloud instance properties through the REST API
	Add cloud instance properties through the ExtraHop API Explorer
	Add AWS properties to RevealX 360 with CloudFormation
	Add AWS properties to RevealX Enterprise with Lambda
	Add Azure properties to ExtraHop with Python

