
ExtraHop 25.2
Trigger API Reference

© 2025ExtraHop Networks, Inc. All rights reserved.

This manual in whole or in part, may not be reproduced, translated, or reduced to any machine-readable
form without prior written approval from ExtraHop Networks, Inc.

For more documentation, see https://docs.extrahop.com.

Published: 2025-04-29

ExtraHop Networks
Seattle, WA 98101
877-333-9872 (US)
+44 (0)203 7016850 (EMEA)
+65-31585513 (APAC)
www.extrahop.com

www.extrahop.com

ExtraHop 25.2 Trigger API Reference 3

Contents

Overview 6

Trigger API resources 7

Data types for custom metrics 8

Global functions 9

General purpose classes 15
Application 16
Buffer 21
Detection 23
Device 27
Discover 33
ExternalData 34
Flow 34
FlowInterface 53
FlowNetwork 57
GeoIP 61
IPAddress 63
Network 65
Session 68
System 70
ThreatIntel 71
Trigger 71
VLAN 71

Protocol and network data classes 72
AAA 74
ActiveMQ 79
AJP 81
BACnet 84
CDP 85
CIFS 86
DB 91
DHCP 95
DICOM 98
DNP3 101
DNS 102
FIX 106
FTP 109
HL7 113
HTTP 115
IBMMQ 123
ICA 126
ICMP 132
Kerberos 139
LDAP 143

ExtraHop 25.2 Trigger API Reference 4

LLDP 148
LLMNR 149
Memcache 151
Modbus 154
MongoDB 158
MSMQ 161
NetFlow 163
NFS 167
NMF 170
NTLM 171
NTP 173
POP3 175
QUIC 178
RDP 179
Redis 182
RFB 184
RPC 187
RTCP 191
RTP 198
SCCP 201
SDP 203
SFlow 205
SIP 207
SLP 213
SMPP 214
SMTP 216
SNMP 219
SOCKS 220
SSH 222
SSL 226
TCP 247
Telnet 254
TFTP 257
Turn 259
UDP 260
WebSocket 260
WSMAN 262

Open data stream classes 265
Remote.HTTP 265
Remote.Kafka 274
Remote.MongoDB 276
Remote.Raw 279
Remote.Syslog 279
Remote 283

Datastore classes 284
AlertRecord 284
Dataset 286
MetricCycle 286
MetricRecord 287
Sampleset 288
Topnset 288

Deprecated API elements 290

ExtraHop 25.2 Trigger API Reference 5

Advanced trigger options 293

Examples 296
Example: Collect ActiveMQ metrics 296
Example: Send data to Azure with Remote.HTTP 297
Example: Monitor SMB actions on devices 298
Example: Track 500-level HTTP responses by customer ID and URI 299
Example: Collect response metrics on database queries 300
Example: Send discovered device data to a remote syslog server 300
Example: Send data to Elasticsearch with Remote.HTTP 301
Example: Access HTTP header attributes 301
Example: Collect IBMMQ metrics 302
Example: Record Memcache hits and misses 303
Example: Parse memcache keys 304
Example: Add metrics to the metric cycle store 306
Example: Parse custom PoS messages with universal payload analysis 307
Example: Parse syslog over TCP with universal payload analysis 308
Example: Parse NTP with universal payload analysis 311
Example: Record data to a session table 312
Example: Track SOAP requests 313
Example: Matching topnset keys 314
Example: Create an application container 316

ExtraHop 25.2 Trigger API Reference 6

Overview
Application Inspection triggers are composed of user-defined code that automatically executes on system
events through the ExtraHop trigger API. By writing triggers, you can collect custom metric data about the
activities on your network. In addition, triggers can perform operations on protocol messages (such as an
HTTP request) before the packet is discarded.

The ExtraHop system monitors, extracts, and records a core set of Layer 7 (L7) metrics for devices on the
network, such as response counts, error counts, and processing times. After these metrics are recorded for
a given L7 protocol, the packets are discarded, freeing resources for continued processing.

Triggers enable you to:

• Generate and store custom metrics to the internal datastore of the ExtraHop system. For example,
while the ExtraHop system does not collect information about which user agent generated an HTTP
request, you can generate and collect that level of detail by writing a trigger and committing the data to
the datastore. You can also view custom data that is stored in the datastore by creating custom metrics
pages and displaying those metrics through the Metric Explorer and dashboards.

• Generate and send records for long-term storage and retrieval to a recordstore.
• Create a user-defined application that collects metrics across multiple types of network traffic to

capture information with cross-tier impact. For example, to gain a unified view of all the network
traffic associated with a website—from web transactions to DNS requests and responses to database
transactions—you can create an application that contains all of these website-related metrics.

• Generate custom metrics and send the information to syslog consumers such as Splunk, or to third
party databases such as MongoDB or Kafka.

• Initiate a packet capture to record individual flows based on user-specified criteria. You can download
captured flows and process them through third-party tools. Your ExtraHop system must be licensed for
packet capture to access this feature.

The purpose of this guide is to provide reference material when writing the blocks of JavaScript code that
run when trigger conditions are met. The Trigger API resources section contains a list of topics that provide
a comprehensive overview of trigger concepts and procedures.

ExtraHop 25.2 Trigger API Reference 7

Trigger API resources
This section contains a list of topics that will help familiarize you with trigger concepts, building a trigger,
and best practices.

• Triggers
• Build a trigger

• Configure trigger settings
• Write a trigger script

• Monitor trigger performance
• Triggers Best Practices Guide
• Triggers FAQ
• Walkthrough: Build a trigger to collect custom metrics for HTTP 404 errors
• Walkthrough: Initiate precision packet captures to analyze zero window conditions
• Walkthrough: Build a trigger to monitor responses to NTP monlist requests

https://docs.extrahop.com/25.2/triggers-overview
https://docs.extrahop.com/25.2/triggers-build
https://docs.extrahop.com/25.2/triggers-build/#configure-trigger-settings
https://docs.extrahop.com/25.2/triggers-build/#write-a-trigger-script
https://docs.extrahop.com/25.2/triggers-monitor-performance
https://docs.extrahop.com/25.2/triggers-best-practices
https://docs.extrahop.com/25.2/triggers-faq
https://docs.extrahop.com/25.2/walkthrough-trigger
https://docs.extrahop.com/25.2/walkthrough-pcap
https://docs.extrahop.com/25.2/walkthrough-upa

ExtraHop 25.2 Trigger API Reference 8

Data types for custom metrics
The ExtraHop Trigger API enables you to create custom metrics that collect data about your environment,
beyond what is provided by built-in protocol metrics.

You can create custom metrics of the following data types:

count
The number of metric events that occurred over a specific time range. For example, to record
information about the number of HTTP requests over time, select a top-level count metric. You
could also select a detail count metric to record information about the number of times clients
accessed a server, with the IPAddress key and an integer representing the number of accesses as a
value.

snapshot
A special type of count metric that, when queried over time, returns the most recent value (such as
TCP established connections).

distinct
The estimated number of unique items observed over time, such as the number of unique ports that
received SYN packets, where a high number might indicate port scanning.

dataset
A statistical summary of timing information, such as 5-number summary: min, 25th-percentile,
median, 75th-percentile, max. For example, to record information about HTTP processing time over
time, select a top-level dataset metric.

sampleset
A statistical summary of timing information, such as mean and standard deviation. For example, to
record information about the length of time it took the server to process each URI, select a detail
sampleset with the URI string key and an integer representing processing time as a value.

max
A special type of count metric that preserves the maximum. For example, to record the slowest
HTTP statements over time without relying on a session table, select a top-level and a detail max
metric.

Custom metrics are supported for the following source types:

• Application
• Device
• Network
• FlowInterface
• FlowNetwork

For more information about the differences between top-level and detail metrics, see the Metrics FAQ .

https://docs.extrahop.com/25.2/metrics-faq/#what-is-the-difference-between-toplevel-and-detail-metrics

ExtraHop 25.2 Trigger API Reference 9

Global functions
Global functions can be called on any event.

cache(key: String, valueFn: () => Any): Any
Caches the specified parameters in a table to enable efficient lookup and return of large data sets.
key: String

An identifier that indicates the location of the cached value. A key must be unique within a
trigger.

valueFn: () => Any
A zero-argument function that returns a non-null value.

In the following example, the cache method is called with large amounts of data hard-coded into
the trigger script:

let storeLookup = cache("storesByNumber", () => ({
 1 : "Newark",
 2 : "Paul",
 3 : "Newark",
 4 : "St Paul"// 620 lines omitted
}));

var storeCity;
var query = HTTP.parseQuery(HTTP.query);

if (query.storeCode) {
 storeCity = storeLookup[parseInt(query.storeCode)];
}

In the following example, a list of known user agents in a JBoss trigger is normalized before it is
compared with the observed user agent. The trigger converts the list to lowercase and trims excess
whitespace, and then caches the entries.

function jbossUserAgents() {
 return [
 // Add your own user agents here, followed by a comma
 "Gecko-like (Edge 14.0; Windows 10; Silverlight or similar)",
 "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5)
 AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/51.0.2704.79 Safari/537.36",
 "Mozilla/5.0 (Android)"
].map(ua => ua.trim().toLowerCase());
}

var badUserAgents = cache("badUserAgents", jbossUserAgents);

commitDetection(type: String, options: Object)
Generates a detection on the ExtraHop system.
type: String

A user-defined type for the definition, such as brute_force_attack. You can tune
detections to hide multiple detections with the same type. The string can only contain
letters, numbers, and underscores.

options: Object
An object that specifies the following properties for the detection:

https://docs.extrahop.com/25.2/detections-manage
https://docs.extrahop.com/25.2/detections-manage

ExtraHop 25.2 Trigger API Reference 10

title: String
A user-defined title that identifies the detection.

description: String
A description of the detection.

riskScore: Number | null
An optional number between 1 and 99 that represents the risk score of the detection.

participants: Array of Objects
An optional array of participant objects associated with the detection. Specify each
participant as the offender or victim property of a Flow endpoint object. For example,
the following code specifies the client in the flow as the offender and the server as the
victim:

commitDetection('exampledetection', {
 participants: [Flow.client.offender,
 Flow.server.victim],

The following participant objects are valid:

• Flow.client.offender

• Flow.client.victim

• Flow.server.offender

• Flow.server.victim

• Flow.sender.offender

• Flow.sender.victim

• Flow.receiver.offender

• Flow.receiver.victim

identityKey: String | null
A unique identifier that enables ongoing detections. If multiple detections with the
same identity key and detection type are generated within the time period specified
by the identityTtl property, the detections are consolidated into a single ongoing
detection.

Note: If the ExtraHop system is generating a large number of detections with
unique identity keys, the system might fail to consolidate some ongoing
detections. However, the system will not generate more than 250
individual detections for a trigger in a day.

identityTtl: String
The amount of time after a detection is generated that duplicate detections are
consolidated into an ongoing detection.

After a detection is generated, if another detection with the same identity key and
detection type is generated within the specified time period, the two detections are
consolidated into a single ongoing detection. Each time a detection is consolidated into
an ongoing detection, the time period is reset, and the detection does not end until the
time period expires. For example, if identityTtl is set to day, and four duplicate
detections are each generated 12 hours apart, the ongoing detection spans three days.
The following time periods are valid:

• hour

• day

• week

The default time period is hour.

ExtraHop 25.2 Trigger API Reference 11

commitRecord(id: String, record: Object): void
Sends a custom record object to the configured recordstore.
id: String

The ID of the record type to be created. The ID cannot begin with a tilde (~).
record: Object

An object containing a list of property and value pairs to be sent to the configured recordstore
as a custom record.

The following properties are automatically added to records and are not represented on the
objects returned by the built-in record accessors, such as HTTP.record:

• ex

• flowID

• client

• clientAddr

• clientPort

• receiver

• receiverAddr

• receiverPort

• sender

• senderAddr

• senderPort

• server

• serverAddr

• serverPort

• timestamp

• vlan

For example, to access the flowID property in an HTTP record, you would include
HTTP.record.Flow.id in your statement.

Important: To avoid unexpected data in the record or an exception when the
method is called, the property names listed above cannot be specified as
a property name in custom records.

In addition, a property name in custom records cannot contain any of
the following characters:

.

Period
:

Colon
[

Square bracket
]

Square bracket

In the following example, the two property and value pairs that have been added to the record
variable are committed to a custom record by the commitRecord function:

var record = {
 'field1': myfield1,
 'field2': myfield2
};

ExtraHop 25.2 Trigger API Reference 12

commitRecord('record_type_id', record);

On most events, you can commit a built-in record that contains default properties. For example, a
built-in record such as the HTTP.record object can be the basis for a custom record.

The following example code commits a custom record that includes all of the built-in metrics from
the HTTP.record object and an additional metric from the HTTP.headers property:

var record = Object.assign(
 {'server': HTTP.headers.server},
 HTTP.record
);
commitRecord('custom-http-record', record);

You can access a built-in record object on the following events:

Class Events

AAA AAA_REQUEST

AAA_RESPONSE

ActiveMQ ACTIVEMQ_MESSAGE

AJP AJP_RESPONSE

CIFS CIFS_RESPONSE

DB DB_RESPONSE

DHCP DHCP_REQUEST

DHCP_RESPONSE

DICOM DICOM_REQUEST

DICOM_RESPONSE

DNS DNS_REQUEST

DNS_RESPONSE

FIX FIX_REQUEST

FIX_RESPONSE

Flow FLOW_RECORD

FTP FTP_RESPONSE

HL7 HL7_RESPONSE

HTTP HTTP_RESPONSE

IBMMQ IBMMQ_REQUEST

IBMMQ_RESPONSE

ICA ICA_OPEN

ICA_CLOSE

ICA_TICK

ICMP ICMP_MESSAGE

Kerberos KERBEROS_REQUEST

ExtraHop 25.2 Trigger API Reference 13

Class Events
KERBEROS_RESPONSE

LDAP LDAP_REQUEST

LDAP_RESPONSE

Memcache MEMCACHE_REQUEST

MEMCACHE_RESPONSE

Modbus MODBUS_RESPONSE

MongoDB MONGODB_REQUEST

MONGODB_RESPONSE

MSMQ MSMQ_MESSAGE

NetFlow NETFLOW_RECORD

NFS NFS_RESPONSE

NTLM NTLM_MESSAGE

POP3 POP3_RESPONSE

RDP RDP_OPEN

RDP_CLOSE

RDP_TICK

Redis REDIS_REQUEST

REDIS_RESPONSE

RTCP RTCP_MESSAGE

RTP RTP_TICK

SCCP SCCP_MESSAGE

SFlow SFLOW_RECORD

SIP SIP_REQUEST

SIP_RESPONSE

SMPP SMPP_RESPONSE

SMTP SMTP_RESPONSE

SSH SSH_OPEN

SSH_CLOSE

SSH_TICK

SSL SSL_ALERT

SSL_OPEN

SSL_CLOSE

SSL_HEARTBEAT

SSL_RENEGOTIATE

ExtraHop 25.2 Trigger API Reference 14

Class Events

Telnet TELNET_MESSAGE

debug(message: String): void
Writes to the debug log if debugging is enabled. The maximum message size is 2048 bytes. Messages
longer than 2048 bytes are truncated.

getTimestamp(): Number
Returns the timestamp from the packet that caused the trigger event to run, expressed in
milliseconds with microseconds as the fractional segment after the decimal.

log(message: String): void
Writes to the debug log regardless of whether debugging is enabled.

Multiple calls to debug and log statements in which the message is the same value will display once
every 30 seconds.

The limit for debug log entries is 2048 bytes. To log larger entries, see Remote.Syslog.
md5(message: String|Buffer): String

Hashes the UTF-8 representation of the specified message Buffer object or string and returns the
MD5 sum of the string.

sha1(message: String|Buffer): String
Hashes the UTF-8 representation of the specified message Buffer object or string and returns the
SHA-1 sum of the string.

sha256(message: String|Buffer): String
Hashes the UTF-8 representation of the specified message Buffer object or string and returns the
SHA-256 sum of the string.

sha512(message: String|Buffer): String
Hashes the UTF-8 representation of the specified message Buffer object or string and returns the
SHA-512 sum of the string.

uuid(): String
Returns a random version 4 Universally Unique Identifier (UUID).

ExtraHop 25.2 Trigger API Reference 15

General purpose classes
The Trigger API classes in this section provide functionality that is broadly applicable across all events.

Class Description

Application Enables you to create new applications and adds
custom metrics at the application level.

Buffer Enables you to access buffer content.

Detection Enables you to retrieve information about
detections on the ExtraHop system.

Device Enables you to retrieve device attributes and add
custom metrics at the device level.

Discover Enables you to access newly discovered devices and
applications.

Flow Flow refers to a conversation between two
endpoints over a protocol such as TCP, UDP or
ICMP. The Flow class provides access to elements
of these conversations, such as endpoint IP
addresses and age of the flow. The Flow class also
contains a flow store designed to pass objects from
request to response on the same flow.

FlowInterface Enables you to retrieve flow interface attributes and
add custom metrics at the interface level.

FlowNetwork Enables you to retrieve flow network attributes and
add custom metrics at the flow network level.

GeoIP Enables you to retrieve the approximate country-
level or city-level location of a specific IP address.

IPAddress Enables you to retrieve IP address attributes.

Network Enables you to add custom metrics at the global
level.

Session Enables you to access the session table,which
supports coordination across multiple
independently executing triggers.

System Enables you to access properties that identify the
ExtraHop system on which a trigger is running.

ThreatIntel Enables you to see whether an IP address,
hostname, or URI is suspect.

Trigger Enables you to access details about a running
trigger.

VLAN Enables you to access information about a VLAN on
the network.

ExtraHop 25.2 Trigger API Reference 16

Application

The Application class enables you collect metrics across multiple types of network traffic to capture
information with cross-tier impact. For example, if you want a unified view of all the network traffic
associated with a website—from web transactions to DNS requests and responses to database transactions
—you can write a trigger to create a custom application that contains all of these related metrics. The
Application class also enables you to create custom metrics and commit the metric data to applications.
Applications can only be created and defined through triggers.

Instance methods

The methods in this section cannot be called directly on the Application class. You can only call these
methods on specific Application class instances. For example, the following statement is valid:

Application("sampleApp").metricAddCount("responses", 1);

However, the following statement is invalid:

Application.metricAddCount("responses", 1);

commit(id: String): void
Creates an application, commits built-in metrics associated with the event to the application, and
adds the application to any built-in or custom records committed during the event.

The application ID must be a string. For built-in application metrics, the metrics are committed only
once, even if the commit() method is called multiple times on the same event.

The following statement creates an application named "myApp" and commits built-in metrics to the
application:

Application("myApp").commit();

If you plan to commit custom metrics to an application, you can create the application without
calling the commit() method. For example, if the application does not already exist, the following
statement creates the application and commits the custom metric to the application:

Application("myApp").metricAddCount("requests", 1);

You can call the Application.commit method only on the following events:

Metric types Event

AAA AAA_REQUEST -and- AAA_RESPONSE

AJP AJP_RESPONSE

CIFS CIFS_RESPONSE

DB DB_RESPONSE

DHCP DHCP_REQUEST -and- DHCP_RESPONSE

DNS DNS_REQUEST -and- DNS_RESPONSE

FIX FIX_REQUEST -and- FIX_RESPONSE

FTP FTP_RESPONSE

HTTP HTTP_RESPONSE

IBMMQ IBMMQ_REQUEST -and- IBMMQ_RESPONSE

ExtraHop 25.2 Trigger API Reference 17

Metric types Event

ICA ICA_TICK -and- ICA_CLOSE

Kerberos KERBEROS_REQUEST -and-
KERBEROS_RESPONSE

LDAP LDAP_REQUEST -and- LDAP_RESPONSE

Memcache MEMCACHE_REQUEST -and-
MEMCACHE_RESPONSE

Modbus MODBUS_RESPONSE

MongoDB MONGODB_REQUEST -and- MONGODB_RESPONSE

NAS CIFS_RESPONSE -and/or- NFS_RESPONSE

NetFlow NETFLOW_RECORD

Note that the commit will not occur if enterprise
IDs are present in the NetFlow record.

NFS NFS_RESPONSE

RDP RDP_TICK

Redis REDIS_REQUEST -and- REDIS_RESPONSE

RPC RPC_REQUEST -and- RPC_RESPONSE

RTP RTP_TICK

RTCP RTCP_MESSAGE

SCCP SCCP_MESSAGE

SIP SIP_REQUEST -and- SIP_RESPONSE

SFlow SFLOW_RECORD

SMTP SMTP_RESPONSE

SSH SSH_CLOSE -and- SSH_TICK

SSL SSL_RECORD -and- SSL_CLOSE

WebSocket WEBSOCKET_OPEN, WEBSOCKET_CLOSE, and
WEBSOCKET_MESSAGE

metricAddCount(metric_name: String, count: Number, options: Object):void
Creates a custom top-level count metric. Commits the metric data to the specified application.
metric_name: String

The name of the top-level count metric.
count: Number

The increment value. Must be a non-zero, positive signed 64-bit integer. A NaN value is
silently discarded.

options: Object
An optional object that can contain the following property:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.

ExtraHop 25.2 Trigger API Reference 18

metricAddDetailCount(metric_name: String, key: String | IPAddress, count: Number,
options: Object):void

Creates a custom detail count metric by which you can drill down. Commits the metric data to the
specified application.
metric_name: String

The name of the detail count metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
count: Number

The increment value. Must be a non-zero, positive signed 64-bit integer. A NaN value is
silently discarded.

options: Object
An optional object that can contain the following property:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDataset(metric_name: String, val: Number, options: Object):void

Creates a custom top-level dataset metric. Commits the metric data to the specified application.
metric_name: String

The name of the top-level dataset metric.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
freq: Number

An option that enables you to simultaneously record multiple occurrences of particular
values in the dataset when set to the number of occurrences specified by the val
parameter. If no value is specified, the default value is 1.

highPrecision: Boolean
A flag that enables one-second granularity for the custom metric when set to true.

metricAddDetailDataset(metric_name: String, key: String | IPAddress, val: Number,
options: Object):void

Creates a custom detail dataset metric by which you can drill down. Commits the metric data to the
specified application.
metric_name: String

The name of the detail count metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
freq: Number

An option that enables you to simultaneously record multiple occurrences of particular
values in the dataset when set to the number of occurrences specified by the val
parameter. If no value is specified, the default value is 1.

ExtraHop 25.2 Trigger API Reference 19

highPrecision: Boolean
A flag that enables one-second granularity for the custom metric when set to true.

metricAddDistinct(metric_name: String, item: Number | String | IPAddress:void
Creates a custom top-level distinct count metric. Commits the metric data to the specified
application.
metric_name: String

The name of the top-level distinct count metric.
item: Number | String | IPAddress

The value to be placed into the set. The value is converted to a string before it is placed in the
set.

metricAddDetailDistinct(metric_name: String, key: String | IPAddress, item: Number |
String | IPAddress:void

Creates a custom detail distinct count metric by which you can drill down. Commits the metric data
to the specified application.
metric_name: String

The name of the detail distinct count metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
item: Number | String | IPAddress

The value to be placed into the set. The value is converted to a string before it is placed in the
set.

metricAddMax(metric_name: String, val: Number, options: Object):void
Creates a custom top-level maximum metric. Commits the metric data to the specified application.
metric_name: String

The name of the top-level maximum metric.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDetailMax(metric_name: String, key: String | IPAddress, val: Number,
options: Object):void

Creates a custom detail maximum metric by which you can drill down. Commits the metric data to
the specified application.
metric_name: String

The name of the detail maximum metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.

ExtraHop 25.2 Trigger API Reference 20

metricAddSampleset(metric_name: String, val: Number, options: Object):void
Creates a custom top-level sampleset metric. Commits the metric data to the specified application.
metric_name: String

The name of the top-level sampleset metric.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDetailSampleset(metric_name: String, key: String | IPAddress, val: Number,
options: Object):void

Creates a custom detail sampleset metric by which you can drill down. Commits the metric data to
the specified application.
metric_name: String

The name of the detail sampleset metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddSnap(metric_name: String, count: Number, options: Object):void

Creates a custom top-level snapshot metric. Commits the metric data to the specified application.
metric_name: String

The name of the top-level snapshot metric.
count: Number

The observed value, such as current established connections. Must be a non-zero, positive
signed 64-bit integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDetailSnap(metric_name: String, key: String | IPAddress, count: Number,
options: Object):void

Creates a custom detail snapshot metric by which you can drill down. Commits the metric data to the
specified application.
metric_name: String

The name of the detail sampleset metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.

ExtraHop 25.2 Trigger API Reference 21

count: Number
The observed value, such as current established connections. Must be a non-zero, positive
signed 64-bit integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
toString(): String

Returns the Application object as a string in the following format:

[object Application <application_id>]

Instance properties
id: String

The unique ID of the application, as shown in the ExtraHop system on the page for that application.

Trigger examples

• Example: Create an application container

Buffer
The Buffer class provides access to binary data.

A buffer is an object with the characteristics of an array. Each element in the array is a number between 0
and 255, representing one byte. Each buffer object has a length property (the number of items in an array)
and a square bracket operator.

Encrypted payload is not decrypted for TCP and UDP payload analysis.

UDP_PAYLOAD requires a matching string but TCP_PAYLOAD does not. If you do not specify a matching
string for TCP_PAYLOAD, the trigger runs one time after the first N bytes of payload.

Methods
Buffer(string: String | format: String)

Constructor for the Buffer class that decodes an encoded string into a Buffer object. The following
parameters are required:
string: String

The encoded string.
format: String

The format that the string argument is encoded with. The following encoding formats are
valid:

• base64

• base64url

Instance methods
decode(type: String): String

Interprets the contents of the buffer and returns a string with one of the following options:

• utf-8

• utf-16

ExtraHop 25.2 Trigger API Reference 22

• ucs2

• hex

equals(buffer: Buffer): Boolean
Performs an equality test between Buffer objects, where buffer is the object to be compared
against.

slice(start: Number, end: Number): Buffer
Returns the specified bytes in a buffer as a new buffer. Bytes are selected starting at the given start
argument and ending at (but not including) the end argument.
start: Number

Integer that specifies where to start the selection. Specify negative numbers to select from
the end of a buffer. This is zero-based.

end: Number
Optional integer that specifies where to end the selection. If omitted, all elements from the
start position and to the end of the buffer will be selected. Specify negative numbers to select
from the end of a buffer. This is zero-based.

toString(format: String): String
Converts the buffer to a string. The following parameter is optional:
format: String

The format to encode the string with. If no encoding is specified, the string is unencoded. The
following encoding formats are valid:

• base64

• base64url

• hex

unpack(format: String, offset: Number): Array
Processes binary or fixed-width data from any buffer object, such as one returned by
HTTP.payload, Flow.client.payload, or Flow.sender.payload, according to the given
format string and, optionally, at the specified offset.

Returns a JavaScript array that contains one or more unpacked fields and contains the absolute
payload byte position +1 of the last byte in the unpacked object. The bytes value can be specified as
the offset in further calls to unpack a buffer.

Note: • The buffer.unpack method interprets bytes in big-endian order by default.
To interpret bytes in little-endian order, prefix the format string with a less
than sign (<).

• The format does not have to consume the entire buffer.
• Null bytes are not included in unpacked strings. For example:

buf.unpack('4s')[0] - > 'example'.
• The z format character represents variable-length, null-terminated strings. If

the last field is z, the string is produced whether or not the null character is
present.

• An exception is throw when all of the fields cannot be unpacked because the
buffer does not contain enough data.

The table below displays supported buffer string formats:

Format C type JavaScript type Standard size

x pad type no value

A struct in6_addr IPAddress 16

a struct in_addr IPAddress 4

ExtraHop 25.2 Trigger API Reference 23

Format C type JavaScript type Standard size

b signed char string of length
1

1

B unsigned char number 1

? _Bool boolean 1

H unsigned short number 2

h short number 2

i int number 4

I unsigned int number 4

l long number 4

L unsigned long number 4

q long long number 8

Q unsigned long
long

number 8

f number number 4

d double number 4

s char[] string

z char[] string

Instance Properties
length: Number

The number of bytes in the buffer.

Trigger Examples

• Example: Parse NTP with universal payload analysis
• Example: Parse syslog over TCP with universal payload analysis

Detection

The Detection class enables you to retrieve information about detections on the ExtraHop system.

Note: Machine learning detections require a connection to ExtraHop Cloud Services .

Events
DETECTION_UPDATE

Runs when a detection is created or updated on the ExtraHop system.

Tip: Instead of writing a trigger to export detection data, we recommend that you create
a detection notification rule . You can configure these rules to send JSON payloads
with a webhook and avoid the complexity of writing a trigger.

Important: This event runs for all detections, regardless of the module access granted to
the user who creates the trigger. For example, triggers created by users with

https://docs.extrahop.com/25.2/rx-enterprise-admin-ui-guide/#connect-to-extrahop-cloud-services
https://docs.extrahop.com/25.2/detections-create-notification-rule
https://docs.extrahop.com/25.2/detections-create-notification-rule

ExtraHop 25.2 Trigger API Reference 24

NPM module access run on DETECTION_UPDATE events for both security
and performance detections.

Note: This event does not run when a detection ticket status is updated. For example,
changing a detection assignee will not cause the DETECTION_UPDATE event to
run. This event also does not run for hidden detections.

Note: You cannot assign triggers that run only on this event to specific devices or device
groups. Triggers that run on this event will run whenever this event occurs.

Properties
applianceId: Number

If called on a console, returns the ID of the connected sensor that the detection occurred on. If called
on a sensor, returns 0.

assignee: String
The assignee of the ticket associated with the detection.

categories: Array of Strings
The list of categories the detection belongs to.

The following values are valid:

Value Category

sec Security

sec.action Actions on Objective

sec.botnet Botnet

sec.caution Caution

sec.command Command & Control

sec.cryptomining Cryptomining

sec.dos Denial of Service

sec.exfil Exfiltration

sec.exploit Exploitation

sec.hardening Hardening

sec.lateral Lateral Movement

sec.ransomware Ransomware

sec.recon Reconnaissance

perf Performance

perf.auth Authorization & Access Control

perf.db Database

perf.network Network Infrastructure

perf.service Service Degradation

perf.storage Storage

perf.virtual Desktop & App Virtualization

perf.web Web Application

ExtraHop 25.2 Trigger API Reference 25

description: String
The description of the detection.

Tip: It is often easier to extract information about a detection from the
Detection.properties property than parsing the Detection.description
text. For more information, see the Detection.properties description.

The following table shows common Markdown formats that you can include in the description:

Format Description Example

Headings Place a number sign (#) and
a space before your text to
format headings. The level of
heading is determined by the
amount of number signs.

Example H4 heading

Unordered lists Place a single asterisk (*) before
your text. If possible, put each
list item on a separate line.

* First example

* Second example

Ordered lists Place a the number 1 and
period (1.) before your text for
each line item; Markdown will
automatically increment the list
number. If possible, put each list
item on a separate line.

1. First example

1. Second example

Bold Place double asterisks before
and after your text.

bold text

Italics Place an underscore before and
after your text.

italicized text

Hyperlinks Place link text in brackets
before the URL in parentheses.
Or type your URL.

Links to external websites open
in a new browser tab. Links
within the ExtraHop system,
such as dashboards, open in the
current browser tab.

[Visit our home
page](https://
www.extrahop.com)

https://
www.extrahop.com

Blockquotes Place a right angle bracket and a
space before your text.

On the ExtraHop
website:

> Access the live
demo and review case
studies.

Emojis Copy and paste an emoji image
into the text box. See the
Unicode Emoji Chart website
for images.

Markdown syntax does not
support emoji shortcodes.

http://unicode.org/emoji/charts/full-emoji-list.html

ExtraHop 25.2 Trigger API Reference 26

endTime: Number
The time that the detection ended, expressed in milliseconds since the epoch.

id: Number
The unique identifier for the detection.

isCustom: Boolean
The value is true if the detection is a custom detection generated by a trigger.

isEventCreate: Boolean
If the value is true, the DETECTION_UPDATE event ran when the detection was created. If the value
is false, the DETECTION_UPDATE event ran when the detection was updated.

mitreCategories: Array of Objects
An array of objects that contains the MITRE techniques and tactics associated with the detection.
Each object contains the following properties:
id

The ID of the MITRE technique or tactic.
name

The name of the MITRE technique or tactic.
url

The web address of the technique or tactic on the MITRE website.
participants: Array of Objects

An array of participant objects associated with the detection. A participant object contains the
following properties:
object: Object

The Device, Application, or IP address object associated with the participant.
id: Number

The ID of the participant.
role: String

The role of the participant in the detection. The following values are valid:

• offender

• victim

properties: Object
An object that contains the properties of the detection. Only built-in detection types include
detection properties. The detection type determines which properties are available.

The field names of the object are the names of the detection properties. For example, the
Anonymous FTP Auth Enabled detection type includes the client_port property, which you can
access with the following code:

Detection.properties.client_port

To view detection property names, view detection types with the GET /detections/formats
operation in the ExtraHop REST API.

Tip: In the trigger editor, you can view valid detection properties with the autocomplete
functionality if you include logic that determines the detection type. For example,
if the trigger contains the following code, and you type a period after "properties",
the trigger editor displays the valid properties for the Anonymous FTP Auth Enabled
detection:

if (Detection.type === 'anonymous_ftp') {
 Detection.properties

ExtraHop 25.2 Trigger API Reference 27

}

resolution: String
The resolution of the ticket associated with the detection. Valid values are action_taken and
no_action_taken.

riskScore: number | null
The risk score of the detection.

startTime: Number
The time that the detection started, expressed in milliseconds since the epoch.

status: String | null
The status of the ticket associated with the detection. Valid string values are acknowledged, new,
in_progress, and closed. The value is null if no status has been specified for the detection. On
the Detections page, null statuses appear as Open.

ticketId: String
The ID of the ticket associated with the detection.

title: String
The title of the detection.

type: String
The type of detection. For custom detections, "custom" is prepended to the user-defined string. For
example, if you specify brute_force_attack in the commitDetection function, the detection
type is custom.brute_force_attack.

updateTime: Number
The last time that the detection was updated, expressed in milliseconds since the epoch.

Device

The Device class enables you to retrieve device attributes and add custom metrics at the device level.

Methods
Device(id: String)

Constructor for the Device object that accepts one parameter, which is a unique 16-character string
ID.

If supplied with an ID from an existing Device object, the constructor creates a copy of that object
with all of the object properties, as shown in the following example:

myDevice = new Device(Flow.server.device.id);
debug("myDevice MAC: " + myDevice.hwaddr);

Metrics committed to a Device object through a metricAdd* function are persisted to the
datastore

lookupByIP(addr: IPAddress | String, vlan: Number): Device
Returns the L3 device that matches the specified IP address and VLAN ID. Returns null if no match
is found.

ExtraHop 25.2 Trigger API Reference 28

addr: IPAddress | String
The IP address for the device. The IP address can be specified as an IPAddress object or as a
string.

vlan: number
The VLAN ID for the device. Returns a default value of 0 if a VLAN ID is not provided or if the
value of the devices_across_vlans settings is set to true in the running configuration
file .

lookupByMAC(addr: String, vlan: Number): Device
Returns the L2 device that matches the specified MAC address and VLAN ID. Returns null if no
match is found.
addr: String

The MAC address for the device.
vlan: Number

The VLAN ID for the device. Returns a default value of 0 if a VLAN ID is not provided or if the
value of the devices_across_vlans settings is set to true in the running configuration
file .

toString(): String
Returns the Device object as a string in the following format:

[object Device <discovery_id>]

Instance methods

The methods described in this section are present only on instances of the Device class. The majority of the
methods enable you to create device-level custom metrics, as shown in the following example:

Flow.server.device.metricAddCount("slow_rsp", 1);

Note: A device might sometimes act as a client and sometimes as a server on a flow.

• Call a method as Device.metricAdd* to collect data for both device roles.
• Call a method as Flow.client.device.metricAdd* to collect data only for the

client role, regardless of whether the trigger is assigned to the client or the server.
• Call a method as Flow.server.device.metricAdd* to collect data only for the

server role, regardless of whether the trigger is assigned to the client or the server.

equals(device: Device): Boolean
Performs an equality test between Device objects, where device is the object to be compared
against.

metricAddCount(metric_name: String, count: Number, options: Object):void
Creates a custom top-level count metric. Commits the metric data to the specified device.
metric_name: String

The name of the top-level count metric.
count: Number

The increment value. Must be a non-zero, positive signed 64-bit integer. A NaN value is
silently discarded.

options: Object
An optional object that can contain the following property:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.

https://docs.extrahop.com/25.2/eh-admin-ui-guide/#running-config
https://docs.extrahop.com/25.2/eh-admin-ui-guide/#running-config
https://docs.extrahop.com/25.2/eh-admin-ui-guide/#running-config
https://docs.extrahop.com/25.2/eh-admin-ui-guide/#running-config

ExtraHop 25.2 Trigger API Reference 29

metricAddDetailCount(metric_name: String, key: String | IPAddress, count: Number,
options: Object):void

Creates a custom detail count metric by which you can drill down. Commits the metric data to the
specified device.
metric_name: String

The name of the detail count metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
count: Number

The increment value. Must be a non-zero, positive signed 64-bit integer. A NaN value is
silently discarded.

options: Object
An optional object that can contain the following property:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDataset(metric_name: String, val: Number, options: Object):void

Creates a custom top-level dataset metric. Commits the metric data to the specified device.
metric_name: String

The name of the top-level dataset metric.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
freq: Number

An option that enables you to simultaneously record multiple occurrences of particular
values in the dataset when set to the number of occurrences specified by the val
parameter. If no value is specified, the default value is 1.

highPrecision: Boolean
A flag that enables one-second granularity for the custom metric when set to true.

metricAddDetailDataset(metric_name: String, key: String | IPAddress, val: Number,
options: Object):void

Creates a custom detail dataset metric by which you can drill down. Commits the metric data to the
specified device.
metric_name: String

The name of the detail count metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
freq: Number

An option that enables you to simultaneously record multiple occurrences of particular
values in the dataset when set to the number of occurrences specified by the val
parameter. If no value is specified, the default value is 1.

ExtraHop 25.2 Trigger API Reference 30

highPrecision: Boolean
A flag that enables one-second granularity for the custom metric when set to true.

metricAddDistinct(metric_name: String, item: Number | String | IPAddress:void
Creates a custom top-level distinct count metric. Commits the metric data to the specified device.
metric_name: String

The name of the top-level distinct count metric.
item: Number | String | IPAddress

The value to be placed into the set. The value is converted to a string before it is placed in the
set.

metricAddDetailDistinct(metric_name: String, key: String | IPAddress, item: Number |
String | IPAddress:void

Creates a custom detail distinct count metric by which you can drill down. Commits the metric data
to the specified device.
metric_name: String

The name of the detail distinct count metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
item: Number | String | IPAddress

The value to be placed into the set. The value is converted to a string before it is placed in the
set.

metricAddMax(metric_name: String, val: Number, options: Object):void
Creates a custom top-level maximum metric. Commits the metric data to the specified device.
metric_name: String

The name of the top-level maximum metric.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDetailMax(metric_name: String, key: String | IPAddress, val: Number,
options: Object):void

Creates a custom detail maximum metric by which you can drill down. Commits the metric data to
the specified device.
metric_name: String

The name of the detail maximum metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.

ExtraHop 25.2 Trigger API Reference 31

metricAddSampleset(metric_name: String, val: Number, options: Object):void
Creates a custom top-level sampleset metric. Commits the metric data to the specified device.
metric_name: String

The name of the top-level sampleset metric.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDetailSampleset(metric_name: String, key: String | IPAddress, val: Number,
options: Object):void

Creates a custom detail sampleset metric by which you can drill down. Commits the metric data to
the specified device.
metric_name: String

The name of the detail sampleset metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddSnap(metric_name: String, count: Number, options: Object):void

Creates a custom top-level snapshot metric. Commits the metric data to the specified device.
metric_name: String

The name of the top-level snapshot metric.
count: Number

The observed value, such as current established connections. Must be a non-zero, positive
signed 64-bit integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDetailSnap(metric_name: String, key: String | IPAddress, count: Number,
options: Object):void

Creates a custom detail snapshot metric by which you can drill down. Commits the metric data to the
specified device.
metric_name: String

The name of the detail sampleset metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.

ExtraHop 25.2 Trigger API Reference 32

count: Number
The observed value, such as current established connections. Must be a non-zero, positive
signed 64-bit integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.

Instance properties

The following properties enable you to retrieve device attributes and are present only on instances of the
Device class.

cdpName: String
The CDP name associated with the device, if present.

dhcpName: String
The DHCP name associated with the device, if present.

discoverTime: Number
The last time the capture process discovered the device (not the original discovery time), expressed
in milliseconds since the epoch (January 1, 1970). Previously discovered devices can be rediscovered
by the capture process if they become idle and later become active again, or if the capture process is
restarted.

To direct a trigger to run only on the initial discovery of a device, see the NEW_DEVICE event
discussed in the Discover class.

dnsNames: Array
An array of strings listing the DNS names associated with the device, if present.

hasTrigger: Boolean
The value is true if a trigger assigned to the Device object is currently running.

If the trigger is running on an event associated with a Flow object, the hasTrigger property value
is true on at least one of the Device objects in the flow.

The hasTrigger property is useful to distinguish device roles. For example, if a trigger is assigned
to a group of proxy servers, you can easily determine whether a device is acting as the client or the
server, rather than checking for IP addresses or device IDs, such as in the following example:

//Event: HTTP_REQUEST
if (Flow.server.device.hasTrigger) {
 // Incoming request
} else {
 // Outgoing request
}

hwaddr: String
The MAC address of the device, if present.

id: String
The 16-character unique ID of the device, as shown in the ExtraHop system on the page for that
device.

ipaddrs: Array
An array of IPAddress objects representing the device's known IP addresses. For L3 devices, the
array always contains one IPAddress.

isGateway: Boolean
The value is true if the device is a gateway.

ExtraHop 25.2 Trigger API Reference 33

isL3: Boolean
The value is true if the device is an L3 child device.

Important: If you have not enabled the ExtraHop system to discover devices by IP
address , the isL3 property is always set to False because the system does
not make a distinction between L3 child and L2 parent devices.

netbiosName: String
The NetBIOS name associated with the device, if present.

vlanId: Number
The VLAN ID for the device.

Trigger Examples

• Example: Monitor SMB actions on devices
• Example: Track 500-level HTTP responses by customer ID and URI
• Example: Collect response metrics on database queries
• Example: Send discovered device data to a remote syslog server
• Example: Access HTTP header attributes
• Example: Record Memcache hits and misses
• Example: Parse memcache keys
• Example: Parse custom PoS messages with universal payload analysis
• Example: Add metrics to the metric cycle store

Discover

The Discover class enables you to retrieve information about newly discovered devices and applications.

Events
NEW_APPLICATION

Runs when an application is first discovered. This event consumes capture resources.

Note: You cannot assign triggers that run only on this event to specific devices or device
groups. Triggers that run on this event will run whenever this event occurs.

NEW_DEVICE

Runs when activity is first observed on a device. This event consumes capture resources.

Note: You cannot assign triggers that run only on this event to specific devices or device
groups. Triggers that run on this event will run whenever this event occurs.

Properties
application: Application

A newly discovered application.

Applies only to NEW_APPLICATION events.
device: Device

A newly discovered device.

Applies only to NEW_DEVICE events.

Note: You cannot specify this property as a participant in the commitDetection
function.

https://docs.extrahop.com/25.2/discover-by-ip
https://docs.extrahop.com/25.2/discover-by-ip

ExtraHop 25.2 Trigger API Reference 34

Trigger Examples

• Example: Send discovered device data to a remote syslog server

ExternalData

The ExternalData class enables you to retrieve data sent from external sources to the Trigger API
through the ExtraHop REST API.

Events
EXTERNAL_DATA

Runs every time data is sent to the ExtraHop system through the POST triggers/externaldata
operation.

Properties
body: String

The external data sent to the trigger.
type: String

An identifier that describes the data sent to the trigger. The type is defined when the data is sent to
the ExtraHop REST API.

Flow

Flow refers to a conversation between two endpoints over a protocol such as TCP, UDP or ICMP. The
Flow class provides access to elements of these conversations, such as endpoint IP addresses and age of
the flow. The Flow class also contains a flow store designed to pass objects from request to response on
the same flow.

Note: You can apply the Flow class on most L7 protocol events, but it is not supported on session
or datastore events.

Events

If a flow is associated with an ExtraHop-monitored L7 protocol, events that correlate to the protocol will
run in addition to flow events. For example, a flow associated with HTTP will also run the HTTP_REQUEST
and HTTP_RESPONSE events.

FLOW_CLASSIFY

Runs whenever the ExtraHop system initially classifies a flow as being associated with a specific
protocol.

Note: For TCP flows, the FLOW_CLASSIFY event runs after the TCP_OPEN event.

Through a combination of L7 payload analysis, observation of TCP handshakes, and port number-
based heuristics, the FLOW_CLASSIFY event identifies the L7 protocol and the device roles for the
endpoints in a flow such as client/server or sender/receiver.

The nature of a flow can change over its lifetime, for example, tunneling over HTTP or switching
from SMTP to SMTP-TLS. In these cases, FLOW_CLASSIFY runs again after the protocol change.

The FLOW_CLASSIFY event is useful for initiating an action on a flow based on the earliest
knowledge of flow information such as the L7 protocol, client/server IP addresses, or sender/
receiver ports.

https://docs.extrahop.com/25.2/rx360-rest-api/#trigger

ExtraHop 25.2 Trigger API Reference 35

Common actions initiated upon FLOW_CLASSIFY include starting a packet capture through the
captureStart() method or associating the flow with an application container through the
addApplication() method.

Additional options are available when you create a trigger that runs on this event. By default,
FLOW_CLASSIFY does not run upon flow expiration; however, you can configure a trigger to do
so in order to accumulate metrics for flows that were not classified before expiring. See Advanced
trigger options for more information.

FLOW_DETACH

Runs when the parser has encountered an unexpected error or has run out of memory and stops
following the flow. In addition, a low quality data feed with missing packets can cause the parser to
detach.

The FLOW_DETACH event is useful for detecting malicious content sent by clients and servers. The
following is an example of how a trigger can detect bad DNS responses upon FLOW_DETACH events:

if (event == "FLOW_DETACH" && Flow.l7proto== "DNS") {
 Flow.addApplication("Malformed DNS");
}

FLOW_RECORD

Enables you to record information about a flow at timed intervals. After FLOW_CLASSIFY has run,
the FLOW_RECORD event will run every N seconds and whenever a flow closes. The default value for
N, known as the publish interval, is 30 minutes; the minimum value is 60 seconds. You can set the
publish interval in the Administration settings.

FLOW_TICK

Enables you to record information about a flow per amount of data or per turn. The FLOW_TICK
event will run on every FLOW_TURN or every 128 packets, whichever occurs first. Also, L2 data is
reset on every FLOW_TICK event which enables you to add data together at each tick. If counting
throughput, collect data from FLOW_TICK events which provide more complete metrics than
FLOW_TURN.

FLOW_TICK provides a means to periodically check for certain conditions on the flow, such as zero
windows and Nagle delays, and then take an action, such as initiating a packet capture or sending a
syslog message.

The following is an example of FLOW_TICK:

log("RTT " + Flow.roundTripTime);
Remote.Syslog.info(
 " eh_event=FLOW_TICK" +
 " ClientIP="+Flow.client.ipaddr+
 " ServerIP="+Flow.server.ipaddr+
 " ServerPort="+Flow.server.port+
 " ServerName="+Flow.server.device.dnsNames[0]+
 " RTT="+Flow.roundTripTime);

FLOW_TURN

Runs on every TCP or UDP turn. A turn represents one full cycle of a client transferring request data
followed by a server transferring a response.

FLOW_TURN also exposes a Turn object.

Endpoints

Flow refers to a conversation between two endpoints over a protocol; an endpoint can be one of the
following components:

• client

ExtraHop 25.2 Trigger API Reference 36

• server

• sender

• receiver

The methods and properties described in this section are called or accessed for a specified endpoint
on the flow. For example, to access the device property from an HTTP client, the syntax is
Flow.client.device.

The endpoint that you specify depends on the events associated with the trigger. For example, the
ACTIVEMQ_MESSAGE event only supports sender and receiver endpoints. The following table displays a list
of events that can be associated with a flow and the endpoints supported for each event:

Event Client / Server Sender / Receiver

AAA_REQUEST yes yes

AAA_RESPONSE yes yes

AJP_REQUEST yes yes

AJP_RESPONSE yes yes

ACTIVEMQ_MESSAGE no yes

CIFS_REQUEST yes yes

CIFS_RESPONSE yes yes

DB_REQUEST yes yes

DB_RESPONSE yes yes

DHCP_REQUEST yes yes

DHCP_RESPONSE yes yes

DICOM_REQUEST yes yes

DICOM_RESPONSE yes yes

DNS_REQUEST yes yes

DNS_RESPONSE yes yes

FIX_REQUEST yes yes

FIX_RESPONSE yes yes

FLOW_CLASSIFY yes no

FLOW_DETACH yes no

FLOW_RECORD yes no

FLOW_TICK yes no

FLOW_TURN yes no

FTP_REQUEST yes yes

FTP_RESPONSE yes yes

HL7_REQUEST yes yes

HL7_RESPONSE yes yes

HTTP_REQUEST yes yes

ExtraHop 25.2 Trigger API Reference 37

Event Client / Server Sender / Receiver

HTTP_RESPONSE yes yes

IBMMQ_REQUEST yes yes

IBMMQ_RESPONSE yes yes

ICA_AUTH yes no

ICA_CLOSE yes no

ICA_OPEN yes no

ICA_TICK yes no

ICMP_MESSAGE no yes

KERBEROS_REQUEST yes yes

KERBEROS_RESPONSE yes yes

LDAP_REQUEST yes yes

LDAP_RESPONSE yes yes

MEMCACHE_REQUEST yes yes

MEMCACHE_RESPONSE yes yes

MOBUS_REQUEST yes yes

MODBUS_RESPONSE yes yes

MONGODB_REQUEST yes yes

MONGODB_RESPONSE yes yes

MSMQ_MESSAGE no yes

NFS_REQUEST yes yes

NFS_RESPONSE yes yes

POP3_REQUEST yes yes

POP3_RESPONSE yes yes

REDIS_REQUEST yes yes

REDIS_RESPONSE yes yes

RDP_CLOSE yes no

RDP_OPEN yes no

RDP_TICK yes no

RTCP_MESSAGE no yes

RTP_CLOSE no yes

RTP_OPEN no yes

RTP_TICK no yes

SCCP_MESSAGE no yes

SIP_REQUEST yes yes

ExtraHop 25.2 Trigger API Reference 38

Event Client / Server Sender / Receiver

SIP_RESPONSE yes yes

SMPP_REQUEST yes yes

SMPP_RESPONSE yes yes

SMTP_REQUEST yes yes

SMTP_RESPONSE yes yes

SSL_ALERT yes yes

SSL_CLOSE yes no

SSL_HEARTBEAT yes yes

SSL_OPEN yes no

SSL_PAYLOAD yes yes

SSL_RECORD yes yes

SSL_RENEGOTIATE yes no

TCP_CLOSE yes no

TCP_OPEN yes no

TCP_PAYLOAD yes yes

UDP_PAYLOAD yes yes

TELNET_MESSAGE yes yes

WEBSOCKET_OPEN yes no

WEBSOCKET_CLOSE yes no

WEBSOCKET_MESSAGE yes yes

Endpoint methods

commitRecord(): void
Sends a record to the configured recordstore on a FLOW_RECORD event. Record commits are
not supported on FLOW_CLASSIFY, FLOW_DETACH, FLOW_TICK, or FLOW_TURN events.

On a flow, traffic moves in each direction between two endpoints. The commitRecord()
method only records flow details in one direction, such as from the client to the
server. To record details about the entire flow you must call commitRecord()
twice, once for each direction, and specify the endpoint in the syntax—for example,
Flow.client.commitRecord() and Flow.server.commitRecord().

For built-in records, each unique record is committed only once, even if the
commitRecord() method is called multiple times for the same unique record.

To view the default properties committed to the record object, see the record property
below.

Endpoint properties

bytes: Number
The number of L4 payload bytes transmitted by a device. Specify the device role in the syntax
—for example, Flow.client.bytes or Flow.receiver.bytes.

ExtraHop 25.2 Trigger API Reference 39

Access only on FLOW_TICK, FLOW_TURN, or FLOW_RECORD events; otherwise, an error will
occur.

customDevices: Array
An array of custom devices in the flow. Specify the device role in the syntax—for example,
Flow.client.customDevices or Flow.receiver.customDevices.

device: Device
The Device object associated with a device. Specify the device role in the
syntax. For example, to access the MAC address of the client device, specify
Flow.client.device.hwaddr.
equals: Boolean

Performs an equality test between Device objects.
dscp: Number

The number representing the last differentiated services code point (DSCP) value of the flow
packet.

Specify the device role in the syntax—for example, Flow.client.dscp or
Flow.server.dscp.

dscpBytes: Array
An array that contains the number of L2 bytes for a specific Differentiated Services Code
Point (DSCP) value transmitted by a device in the flow. Specify the device role in the syntax—
for example, Flow.client.dscpBytes or Flow.server.dscpBytes.

The value is zero for each entry that has no bytes of the specific DSCP since the last
FLOW_TICK event.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
dscpName1: String

The name associated with the DSCP value transmitted by device1 in the flow. The following
table displays well-known DSCP names:

Number Name

8 CS1

10 AF11

12 AF12

14 AF13

16 CS2

18 AF21

20 AF22

22 AF23

24 CS3

26 AF31

28 AF32

30 AF33

32 CS4

34 AF41

36 AF42

ExtraHop 25.2 Trigger API Reference 40

Number Name

38 AF43

40 CS5

44 VA

46 EF

48 CS6

56 CS7

dscpName2: String
The name associated with the DSCP value transmitted by device2 in the flow. The following
table displays well-known DSCP names:

Number Name

8 CS1

10 AF11

12 AF12

14 AF13

16 CS2

18 AF21

20 AF22

22 AF23

24 CS3

26 AF31

28 AF32

30 AF33

32 CS4

34 AF41

36 AF42

38 AF43

40 CS5

44 VA

46 EF

48 CS6

56 CS7

dscpPkts: Array
An array that contains the number of L2 packets for a given Differentiated Services Code
Point (DSCP) value transmitted by a device in the flow. Specify the device role in the syntax—
for example, Flow.client.dscpPkts or Flow.server.dscpPkts.

ExtraHop 25.2 Trigger API Reference 41

The value is zero for each entry that has no packets of the specific DSCP since the last
FLOW_TICK event.

Applies only to FLOW_TICK or FLOW_TURN events.
fragPkts: Number

The number of packets resulting from IP fragmentation transmitted by a client
or server device in the flow. Specify the device role in the syntax—for example,
Flow.client.fragPkts or Flow.server.fragPkts.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
ipaddr1: IPAddress

The IPAddress object associated with device1 in the flow.
equals: Boolean

Performs an equality test between IPAddress objects.
ipaddr2: IPAddress

The IPAddress object associated with device2 in the flow.
equals: Boolean

Performs an equality test between IPAddress objects.
isAborted: Boolean

The value is true if a TCP flow has been aborted through a TCP reset (RST). The flow can
be aborted by a device. If applicable, specify the device role in the syntax—for example,
Flow.client.isAborted or Flow.receiver.isAborted.

This condition may be detected in the TCP_CLOSE event and in any impacted L7 events (for
example, HTTP_REQUEST or DB_RESPONSE).

Note: • An L4 abort occurs when a TCP connection is closed with a RST instead
of a graceful shutdown.

• An L7 response abort occurs when a connection closes while in the
middle of a response. This can be due to a RST, a graceful FIN shutdown,
or an expiration.

• An L7 request abort occurs when a connection closes in the middle of a
request. This can also be due to a RST, a graceful FIN shutdown, or an
expiration.

isShutdown: Boolean
The value is true if the device initiated the shutdown of the TCP connection.
Specify the device role in the syntax—for example, Flow.client.isShutdown or
Flow.receiver.isShutdown.

l2Bytes: Number
The number of L2 bytes, including the ethernet headers, transmitted by a device in the
flow. Specify the device role in the syntax—for example, Flow.client.l2Bytes or
Flow.server.l2Bytes.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
nagleDelay: Number

The number of Nagle delays associated with a device in the flow. Specify the device role in
the syntax—for example, Flow.client.nagleDelay or Flow.server.nagleDelay.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 42

offender: Object
Returns an offender participant object for a device in the flow. Specify this property in
the commitDetection() function to identify the device in the flow as the offender in a
detection, as shown in the following code example:

commitDetection('exampledetection', {
 participants: [Flow.client.offender, Flow.server.victim],

overlapFragPkts: Number
The number of non-identical IP fragment packets with overlapping data transmitted
by a device in the flow. Specify the device role in the syntax—for example,
Flow.client.overlapFragPkts or Flow.server.overlapFragPkts.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
overlapSegments: Number

The number of non-identical TCP segments, transmitted by a device in the flow,
where two or more TCP segments contain data for the same part of the flow. Specify
the device role in the syntax—for example, Flow.client.overlapSegments or
Flow.server.overlapSegments.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
payload: Buffer

The payload Buffer associated with a device in the flow. Specify the device role in the syntax
—for example, Flow.client.payload or Flow.receiver.payload.

Access only on TCP_PAYLOAD, UDP_PAYLOAD, or SSL_PAYLOAD events; otherwise, an error
will occur.

pkts: Number
The number of packets transmitted by a device in the flow. Specify the device role in the
syntax—for example, Flow.client.pkts or Flow.server.pkts.

Access only on FLOW_TICK, FLOW_TURN, or FLOW_RECORD events; otherwise, an error will
occur.

port: Number
The port number associated with a device in the flow. Specify the device role in the syntax—
for example, Flow.client.port or Flow.receiver.port.

rcvWndThrottle: Number
The number of receive window throttles sent from a device in the flow. Specify
the device role in the syntax—for example, Flow.client.rcvWndThrottle or
Flow.server.rcvWndThrottle.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
record: Object

The record object that can be sent to the configured recordstore through a call to
Flow.commitRecord() on a FLOW_RECORD event. The record object represents data from
a single direction on the flow.

The default record object can contain the following properties:

• age

• bytes (L3)

Note: This property represents the total number of bytes that were transmitted
by the flow at the time that the FLOW_RECORD event ran. The
FLOW_RECORD event runs several times over the course of each flow,
so the value will increase every time the event runs.

• clientIsExternal

ExtraHop 25.2 Trigger API Reference 43

• dscpName

• first

• firstPayloadBytes

A hexadecimal representation of the first 16 payload bytes in the flow.
• last

• pkts

• proto

• receiverAddr

• receiverIsExternal

• receiverPort

• roundTripTime

The most recent round trip time (RTT) in this flow. An RTT is the time it took for a device
to send a packet and receive an immediate acknowledgment (ACK).

• senderAddr

• senderIsExternal

• senderPort

• serverIsExternal

• tcpFlags

Specify the device role in the syntax—for example, Flow.client.record or
Flow.server.record.

Access the record object only on FLOW_RECORD events; otherwise, an error will occur.
rto: Number

The number of retransmission timeouts (RTOs) associated with a device in the flow. Specify
the device role in the syntax—for example, Flow.client.rto or Flow.server.rto.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
victim: Object

Returns an victim participant object for a device in the flow. Specify this property in the
commitDetection() function to identify the device in the flow as the victim in a detection,
as shown in the following code example:

commitDetection('exampledetection', {
 participants: [Flow.client.offender, Flow.server.victim],

totalL2Bytes

The number of L2 bytes sent by a device during the flow. Specify the device role in the syntax
—for example, Flow.client.totalL2Bytes or Flow.server.totalL2Bytes.

totalL2Bytes1: Number
The number of L2 bytes sent during the flow by device1.

totalL2Bytes2: Number
The number of L2 bytes sent during the flow by device2.

zeroWnd: Number
The number of zero windows sent from a device in the flow. Specify the device role in the
syntax—for example, Flow.client.zeroWnd or Flow.server.zeroWnd.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 44

Methods
addApplication(name: String, turnTiming: Boolean): void

Creates an application with the specified name and collects L2-L4 metrics from the flow. The
application can be viewed in the ExtraHop system and the metrics are displayed on an L4 page in
the application. A flow can be associated with one or more applications at a given instant; the L2-L4
metrics collected by each application will be the same.

Calling Flow.addApplication(name) on a FLOW_CLASSIFY event is common on unsupported
protocols. For flows on supported protocols with L7 trigger events, it is recommended to call the
Application(name).commit() method, which collects a larger set of protocol metrics.

The optional turnTiming flag is set to false by default. If set to true, the ExtraHop system collects
additional turn timing metrics for the flow. If this flag is omitted, no turn timing metrics are recorded
for the application on the associated flow. Turn timing analysis analyzes L4 behavior in order to infer
L7 processing times when the monitored protocol follows a client-request, server-response pattern
and in which the client sends the first message. "Banner" protocols (where the server sends the first
message) and protocols where data flows in both directions concurrently are not recommended for
turn timing analysis.

captureStart(name: String, options: Object): String
Initiates a Precision Packet Capture (PPCAP) for the flow and returns a unique identifier of the
packet capture in the format of a decimal number as a string. Returns null if the packet capture fails
to start.
name: String

The name of the packet capture file.

• The maximum length is 256 characters
• A separate capture is created for each flow.
• Capture files with the same name are differentiated by timestamps.

options: Object
The options contained in the capture object. Omit any of the options to indicate unlimited size
for that option. All options apply to the entire flow except the "lookback" options which apply
only to the part of the flow before the trigger event that started the packet capture.
maxBytes: Number

The total maximum number of bytes.
maxBytesLookback: Number

The total maximum number of bytes from the lookback buffer. The lookback buffer
refers to packets captured before the call to Flow.captureStart().

maxDurationMSec: Number
The maximum duration of the packet capture, expressed in milliseconds.

maxPackets: Number
The total maximum number of packets. The maximum value might be exceeded if the
trigger load is heavy.

maxPacketsLookback: Number
The maximum number of packets from the lookback buffer. The lookback buffer refers
to packets captured before the call to Flow.captureStart().

The following is an example of Flow.captureStart():

// EVENT: HTTP_REQUEST
// capture facebook HTTP traffic flows
if (HTTP.uri.indexOf("www.facebook.com") !== -1) {
 var name = "facebook-" + HTTP.uri;
 //packet capture options: capture 20 packets, up to 10 from the
 lookback buffer

https://docs.extrahop.com/25.2/system-health-overview/#trigger-load

ExtraHop 25.2 Trigger API Reference 45

 var opts = {
 maxPackets: 20,
 maxPacketsLookback: 10
 };
 Flow.captureStart(name, opts);
}

Note: • The Flow.captureStart() function call requires that you have a license
for precision packet capture.

• You can specify the number of bytes per packet (snaplen) you want to capture
when configuring the trigger in the ExtraHop system. This option is available
only on some events. See Advanced trigger options for more information.

• On ExtraHop Performance systems, captured files are available in the
Administration settings. On RevealX systems, captured files are available from
the Packets page in the ExtraHop system.

• On ExtraHop Performance systems, if the precision packet capture disk is full,
no new captures are recorded until the user deletes the files manually. On
Reveal systems, older packet captures are deleted when the precision packet
capture disk becomes full to enable the system to continue recording new
packet captures.

• The maximum file name string length is 256 characters. If the name exceeds
256 characters, it will be truncated and a warning message will be visible in the
debug log, but the trigger will continue to execute.

• The capture file size is the whichever maximum is reached first between the
maxPackets and maxBytes options.

• The size of the capture lookback buffer is whichever maximum is reached first
between the maxPacketsLookback and maxBytesLookback options.

• Each passed max* parameter will capture up to the next packet boundary.
• If the packet capture was already started on the current flow,

Flow.captureStart() calls result in a warning visible in the debug log, but
the trigger will continue to run.

• There is a maximum of 128 concurrent packet captures in the system. If that
limit is reached, subsequent calls to Flow.captureStart() will generate a
warning visible in the debug log, but the trigger will continue to execute.

captureStop(): Boolean
Stops a packet capture that is in progress on the current flow.

commitRecord1(): void
Sends a record to the configured recordstore that represents data sent from device1 in a single
direction on the flow.

You can call this method only on FLOW_RECORD events, and each unique record is committed only
once for built-in records.

To view the properties committed to the record object, see the record property below.
commitRecord2(): void

Sends a record to the configured recordstore that represents data sent from device2 in a single
direction on the flow.

You can call this method only on FLOW_RECORD events, and each unique record is committed only
once for built-in records.

To view the properties committed to the record object, see the record property below.
findCustomDevice(deviceID: String): Device

Returns a single Device object that corresponds to the specified deviceID parameter if the device is
located on either side of the flow. Returns null if no corresponding device is found.

ExtraHop 25.2 Trigger API Reference 46

getApplications(): String
Retrieves all applications associated with the flow.

Properties

The Flow object properties and methods discussed in this section are available to every L7 trigger event
associated with the flow.

By default, the ExtraHop system uses loosely-initiated protocol classification, so it will try to classify flows
even after the connection was initiated. Loose initiation can be turned off for ports that do not always carry
the protocol traffic (for example, the wildcard port 0). For such flows, device1, port1, and ipaddr1
represent the device with the numerically lower IP address and device2, port2, and ipaddr2 represent
the device with the numerically higher IP address.

age: Number
The time elapsed since the flow was initiated, expressed in seconds.

bytes1: Number
The number of L4 payload bytes transmitted by one of two devices in the flow; the other device is
represented by bytes2. The device represented by bytes1 remains consistent for the flow.

Access only on FLOW_TICK, FLOW_TURN, or FLOW_RECORD events; otherwise, an error will occur.
bytes2: Number

The number of L4 payload bytes transmitted by one of two devices in the flow; the other device is
represented by bytes1. The device represented by bytes2 remains consistent for the flow.

Access only on FLOW_TICK, FLOW_TURN, or FLOW_RECORD events; otherwise, an error will occur.
customDevices1: Array

An array of custom Device objects on a flow. Custom devices on the other side of the flow are
available by accessing customDevices2. The device represented by customDevices1 remains
consistent for the flow.

customDevices2: Array
An array of custom Device objects on a flow. Custom devices on the other side of the flow are
available by accessing customDevices1. The device represented by customDevices2 remains
consistent for the flow.

device1: Device
The Device object associated with one of two devices in the flow; the other device is represented
by device2. The device represented by device1 remains consistent for the flow. For example,
Flow.device1.hwaddr accesses the MAC addresses of this device in the flow.
equals: Boolean

Performs an equality test between Device objects.
device2: Device

The Device object associated with one of two devices in the flow; the other device is represented
by device1. The device represented by device2 remains consistent for the flow. For example,
Flow.device2.hwaddr accesses the MAC addresses of this device in the flow.
equals: Boolean

Performs an equality test between Device objects.
dscp1: Number

The number representing the last Differentiated Services Code Point (DSCP) value transmitted by
one of two devices in the flow; the other device is represented by dscp2. The device represented by
dscp1 remains consistent for the flow.

ExtraHop 25.2 Trigger API Reference 47

dscp2: Number
The lnumber representing the last Differentiated Services Code Point (DSCP) value transmitted by
one of two devices in the flow; the other device is represented by dscp1. The device represented by
dscp2 remains consistent for the flow.

dscpBytes1: Array
An array that contains the number of L2 bytes for a specific Differentiated Services Code Point
(DSCP) value transmitted by one of two devices in the flow; the other device is represented by
dscpBytes2. The device represented by dscpBytes1 remains consistent for the flow.

The value is zero for each entry that has no bytes of the specific DSCP since the last FLOW_TICK
event.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
dscpBytes2: Array

An array that contains the number of L2 bytes for a specific Differentiated Services Code Point
(DSCP) value transmitted by one of two devices in the flow; the other device is represented by
dscpBytes1. The device represented by dscpBytes2 remains consistent for the flow.

The value is zero for each entry that has no bytes of the specific DSCP since the last FLOW_TICK
event.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
dscpName1: String

The name associated with the DSCP value transmitted by one of two devices in the flow; the other
device is represented by dscpName2. The device represented by dscpName1 remains consistent for
the flow.

See the dscpName property in the Endpoints section for a list of supported DSCP code names.
dscpName2: String

The name associated with the DSCP value transmitted by one of two devices in the flow; the other
device is represented by dscpName1. The device represented by dscpName2 remains consistent for
the flow.

See the dscpName property in the Endpoints section for a list of supported DSCP code names.
dscpPkts1: Array

An array that contains the number of L2 packets for a given Differentiated Services Code Point
(DSCP) value transmitted by one of two devices in the flow; the other device is represented by
dscpPkts2. The device represented by dscpPkts1 remains consistent for the flow.

The value is zero for each entry that has no packets of the specific DSCP since the last FLOW_TICK
event.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
dscpPkts2: Array

An array that contains the number of L2 packets for a given Differentiated Services Code Point
(DSCP) value transmitted by one of two devices in the flow; the other device is represented by
dscpPkts1. The device represented by dscpPkts2 remains consistent for the flow.

The value is zero for each entry that has no packets of the specific DSCP since the last FLOW_TICK
event.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
fragPkts1: Number

The number of packets resulting from IP fragmentation transmitted by one of two devices in the
flow; the other device is represented by fragPkts2. The device represented by fragPkts1
remains consistent for the flow.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 48

fragPkts2: Number
The number of packets resulting from IP fragmentation transmitted by one of two devices in the
flow; the other device is represented by fragPkts1. The device represented by fragPkts2
remains consistent for the flow.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
id: String

The unique identifier of a Flow record.
ipaddr: IPAddress

TheIPAddress object associated with a device in the flow. Specify the device role in the syntax—for
example, Flow.client.ipaddr or Flow.receiver.ipaddr.
equals: Boolean

Performs an equality test between IPAddress objects.
ipproto: String

The IP protocol associated with the flow, such as TCP or UDP.
ipver: String

The IP version associated with the flow, such as IPv4 or IPv6.
isAborted: Boolean

The value is true if a TCP flow has been aborted through a TCP reset (RST). The flow can
be aborted by a device. If applicable, specify the device role in the syntax—for example,
Flow.client.isAborted or Flow.receiver.isAborted.

This condition may be detected in the TCP_CLOSE event and in any impacted L7 events (for
example, HTTP_REQUEST or DB_RESPONSE).

Note: • An L4 abort occurs when a TCP connection is closed with a RST instead of a
graceful shutdown.

• An L7 response abort occurs when a connection closes while in the middle of a
response. This can be due to a RST, a graceful FIN shutdown, or an expiration.

• An L7 request abort occurs when a connection closes in the middle of a
request. This can also be due to a RST, a graceful FIN shutdown, or an
expiration.

isExpired: Boolean
The value is true if the flow expired at the time of the event.

isShutdown: Boolean
The value is true if the device initiated the shutdown of the TCP connection. Specify the device role
in the syntax—for example, Flow.client.isShutdown or Flow.receiver.isShutdown.

l2Bytes1: Number
The number of L2 bytes, including the ethernet headers, transmitted by one of two devices in the
flow; the other device is represented by l2Bytes2. The device represented by l2Bytes1 remains
consistent for the flow.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
l2Bytes2: Number

The number of L2 bytes, including the ethernet headers, transmitted by one of two devices in the
flow; the other device is represented by l2Bytes1. The device represented by l2Bytes2 remains
consistent for the flow.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
l7proto: String

The L7 protocol associated with the flow. For known protocols, the property returns a string
representing the protocol name, such as HTTP, DHCP, Memcache. For lesser-known protocols, the

ExtraHop 25.2 Trigger API Reference 49

property returns a string formatted as ipproto:port—tcp:13724 or udp:11258 For custom
protocol names, the property returns a string representing the name set through the Protocol
Classification section in the Administration settings.

This property is not valid during TCP_OPEN events.
nagleDelay1: Number

The number of Nagle delays associated with one of two devices in the flow; the other device is
represented by nagleDelay2. The device represented by nagleDelay1 remains consistent for the
flow.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
nagleDelay2: Number

The number of Nagle delays associated with one of two devices in the flow; the other device is
represented by nagleDelay1. The device represented by nagleDelay2 remains consistent for the
flow.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
overlapFragPkts1: Number

The number of non-identical IP fragment packets transmitted by one of two devices in the
flow; the other device is represented by overlapFragPkts2. The device represented by
overlapFragPkts1 remains consistent for the flow.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
overlapFragPkts2: Number

The number of non-identical IP fragment packets transmitted by one of two devices in the
flow; the other device is represented by overlapFragPkts1. The device represented by
overlapFragPkts2 remains consistent for the flow.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
overlapSegments1: Number

The number of non-identical TCP segments where two or more segments contain data for the same
part of the flow. The TCP segments are transmitted by one of two devices in the flow; the other
device is represented by overlapSegments2. The device represented by overlapSegments1
remains consistent for the flow.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
overlapSegments2: Number

The number of non-identical TCP segments where two or more segments contain data for the same
part of the flow. The TCP segments are transmitted by one of two devices in the flow; the other
device is represented by overlapSegments1. The device represented by overlapSegments2
remains consistent for the flow.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
payload1: Buffer

The payload Buffer associated with one of two devices in the flow; the other device is represented
by payload2. The device represented by payload1 remains consistent for the flow.

Access only on TCP_PAYLOAD, UDP_PAYLOAD, and SSL_PAYLOAD events; otherwise, an error will
occur.

payload2: Buffer
The payload Buffer associated with one of two devices in the flow; the other device is represented
by payload1. The device represented by payload2 remains consistent for the flow.

Access only on TCP_PAYLOAD, UDP_PAYLOAD, or SSL_PAYLOAD events; otherwise, an error will
occur.

ExtraHop 25.2 Trigger API Reference 50

pkts1: Number
The number of packets transmitted by one of two devices in the flow; the other device is
represented by pkts2. The device represented by pkts1 remains consistent for the flow.

Access only on FLOW_TICK, FLOW_TURN, or FLOW_RECORD events; otherwise, an error will occur.
pkts2: Number

The number of packets transmitted by one of two devices in the flow; the other device is
represented by pkts1. The device represented by pkts2 remains consistent for the flow.

Access only on FLOW_TICK, FLOW_TURN, or FLOW_RECORD events; otherwise, an error will occur.
port1: Number

The port number associated with one of two devices in a flow; the other device is represented by
port2. The device represented by port1 remains consistent for the flow.

port2: Number
The port number associated with one of two devices in a flow; the other device is represented by
port1. The device represented by port2 remains consistent for the flow.

rcvWndThrottle1: Number
The number of receive window throttles sent from one of two devices in the flow; the other device
is represented by rcvWndThrottle2. The device represented by rcvWndThrottle1 remains
consistent for the flow.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
rcvWndThrottle2: Number

The number of receive window throttles sent from one of two devices in the flow; the other device
is represented by rcvWndThrottle1. The device represented by rcvWndThrottle2 remains
consistent for the flow.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
record1: Object

The record object that can be sent to the configured recordstore through a call to
Flow.commitRecord1() on a FLOW_RECORD event.

The object represents traffic sent in a single direction from one of two devices in the flow; the other
device is represented by the record2 property. The device represented by the record1 property
remains consistent for the flow.

Access the record object only on FLOW_RECORD events; otherwise, an error will occur.

The default record object can contain the following properties:

• age

• bytes (L3)

• clientIsExternal

• dscpName

• first

• last

• pkts

• proto

• receiverAddr

• receiverIsExternal

• receiverPort

• roundTripTime

The most recent round trip time (RTT) observed in the flow. An RTT is the time it took for a
device to send a single TCP packet and receive an immediate corresponding acknowledgment
(ACK) packet.

ExtraHop 25.2 Trigger API Reference 51

• senderAddr

• senderIsExternal

• senderPort

• serverIsExternal

• tcpOrigin

This record field is included only if the record represents traffic sent from a client or sender
device.

• tcpFlags

record2: Object
The record object that can be sent to the configured recordstore through a call to
Flow.commitRecord2() on a FLOW_RECORD event.

The object represents traffic sent in a single direction from one of two devices in the flow; the other
device is represented by the record1 property. The device represented by the record2 property
remains consistent for the flow.

Access the record object only on FLOW_RECORD events; otherwise, an error will occur.

The default record object can contain the following properties:

• age

• bytes (L3)

• clientIsExternal

• dscpName

• first

• last

• pkts

• proto

• receiverAddr

• receiverIsExternal

• receiverPort

• roundTripTime

The most recent round trip time (RTT) observed in the flow. An RTT is the time it took for a
device to send a single TCP packet and receive an immediate corresponding acknowledgment
(ACK) packet.

• senderAddr

• senderIsExternal

• senderPort

• serverIsExternal

• tcpOrigin

This record field is included only if the record represents traffic sent from a client or sender
device.

• tcpFlags

roundTripTime: Number
The median round trip time (RTT) observed since the last FLOW_TICK event ran, expressed in
milliseconds. An RTT is the time it took for a device to send a single TCP packet and receive an
immediate corresponding acknowledgment (ACK) packet. The value is NaN if there are no RTT
samples.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 52

rto1: Number
The number of retransmission timeouts (RTOs) associated with one of two devices in the flow; the
other device is represented by rto2. The device represented by rto1 remains consistent for the
flow.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
rto2: Number

The number of retransmission timeouts (RTOs) associated with one of two devices in the flow; the
other device is represented by rto1. The device represented by rto2 remains consistent for the
flow.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
store: Object

The flow store is designed to pass objects from request to response on the same flow. The store
object is an instance of an empty JavaScript object. Objects can be attached to the store as
properties by defining the property key and property value. For example:

Flow.store.myobject = "myvalue";

For events that occur on the same flow, you can apply the flow store instead of the session table to
share information. For example:

// request
Flow.store.userAgent = HTTP.userAgent;

// response
var userAgent = Flow.store.userAgent;

Important: Flow store values persist across all requests and responses carried on that
flow. When working with the flow store, it is a best practice to set the flow
store variable to null when its value should not be conveyed to the next
request or response. This practice has the added benefit of conserving flow
store memory.

Most flow store triggers should have a structure similar to the following example:

if (event === 'DB_REQUEST') {
 if (DB.statement) {
 Flow.store.stmt = DB.statement;
} else {
 Flow.store.stmt = null;
}
}
else if (event === 'DB_RESPONSE') {
 var stmt = Flow.store.stmt;
 Flow.store.stmt = null;
 if (stmt) {
 // Do something with 'stmt';
 // for example, commit a metric
 }
}

Note: Because DHCP requests often occur on different flows than corresponding
DHCP responses, we recommend that you combine DHCP request and response
information by storing DHCP transaction IDs in the session table. For example,
the following trigger code creates a metric that tracks how many DHCP discover
messages received a corresponding DHCP offer message:

if (event === 'DHCP_REQUEST'){

ExtraHop 25.2 Trigger API Reference 53

 var opts = {
 expire: 30
 };
 Session.add(DHCP.txId.toString(), DHCP.msgType, opts);
}
else if (event === 'DHCP_RESPONSE'){
 var reqMsgType = Session.lookup(DHCP.txId.toString());
 if (reqMsgType && DHCP.msgType === 'DHCPOFFER') {
 Device.metricAddCount('dhcp-discover-offer', 1);
 }
}

tcpOrigin: IPAddress | Null
The original IP address of the client or sender if specified by a network proxy in TCP option 28.

vlan: Number
The VLAN number associated with the flow. If no VLAN tag is present, this value is set to 0.

vxlanVNI: Number
The VXLAN Network Identifier number associated with the flow. If no VXLAN tag is present, this
value is set to NaN.

zeroWnd1: Number
The number of zero windows associated with one of two devices in the flow; the other device is
represented by zeroWnd2. The device represented by zeroWnd1 remains consistent for the flow.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
zeroWnd2: Number

The number of zero windows associated with one of two devices in the flow; the other device is
represented by zeroWnd1. The device represented by zeroWnd2 remains consistent for the flow.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.

Trigger Examples

• Example: Monitor SMB actions on devices
• Example: Track 500-level HTTP responses by customer ID and URI
• Example: Parse custom PoS messages with universal payload analysis
• Example: Parse syslog over TCP with universal payload analysis
• Example: Parse NTP with universal payload analysis
• Example: Track SOAP requests

FlowInterface

The FlowInterface class enables you to retrieve flow interface attributes and to add custom metrics at
the interface level.

Methods
FlowInterface(id: string)

A constructor for the FlowInterface object that accepts a flow interface ID. An error occurs if the
flow interface ID does not exist on the ExtraHop system.

ExtraHop 25.2 Trigger API Reference 54

Instance methods

The methods in this section enable you to create custom metrics on a flow interface. The methods are
present only on instances of the NetFlow class. For example, the following statement collects metrics from
NetFlow traffic on the ingress interface:

NetFlow.ingressInterface.metricAddCount("slow_rsp", 1);

However, you can call the FlowInterface method as a static method on NETFLOW_RECORD events. For
example, the following statement collects metrics from NetFlow traffic on both the ingress and egress
interfaces:

FlowInterface.metricAddCount("slow_rsp", 1);

metricAddCount(metric_name: String, count: Number, options: Object):void
Creates a custom top-level count metric. Commits the metric data to the specified flow interface.
metric_name: String

The name of the top-level count metric.
count: Number

The increment value. Must be a non-zero, positive signed 64-bit integer. A NaN value is
silently discarded.

options: Object
An optional object that can contain the following property:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDetailCount(metric_name: String, key: String | IPAddress, count: Number,
options: Object):void

Creates a custom detail count metric by which you can drill down. Commits the metric data to the
specified flow interface.
metric_name: String

The name of the detail count metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
count: Number

The increment value. Must be a non-zero, positive signed 64-bit integer. A NaN value is
silently discarded.

options: Object
An optional object that can contain the following property:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDataset(metric_name: String, val: Number, options: Object):void

Creates a custom top-level dataset metric. Commits the metric data to the specified flow interface.
metric_name: String

The name of the top-level dataset metric.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:

ExtraHop 25.2 Trigger API Reference 55

freq: Number
An option that enables you to simultaneously record multiple occurrences of particular
values in the dataset when set to the number of occurrences specified by the val
parameter. If no value is specified, the default value is 1.

highPrecision: Boolean
A flag that enables one-second granularity for the custom metric when set to true.

metricAddDetailDataset(metric_name: String, key: String | IPAddress, val: Number,
options: Object):void

Creates a custom detail dataset metric by which you can drill down. Commits the metric data to the
specified flow interface.
metric_name: String

The name of the detail count metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
freq: Number

An option that enables you to simultaneously record multiple occurrences of particular
values in the dataset when set to the number of occurrences specified by the val
parameter. If no value is specified, the default value is 1.

highPrecision: Boolean
A flag that enables one-second granularity for the custom metric when set to true.

metricAddDistinct(metric_name: String, item: Number | String | IPAddress:void
Creates a custom top-level distinct count metric. Commits the metric data to the specified flow
interface.
metric_name: String

The name of the top-level distinct count metric.
item: Number | String | IPAddress

The value to be placed into the set. The value is converted to a string before it is placed in the
set.

metricAddDetailDistinct(metric_name: String, key: String | IPAddress, item: Number |
String | IPAddress:void

Creates a custom detail distinct count metric by which you can drill down. Commits the metric data
to the specified flow interface.
metric_name: String

The name of the detail distinct count metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
item: Number | String | IPAddress

The value to be placed into the set. The value is converted to a string before it is placed in the
set.

metricAddMax(metric_name: String, val: Number, options: Object):void
Creates a custom top-level maximum metric. Commits the metric data to the specified flow interface.

ExtraHop 25.2 Trigger API Reference 56

metric_name: String
The name of the top-level maximum metric.

val: Number
The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDetailMax(metric_name: String, key: String | IPAddress, val: Number,
options: Object):void

Creates a custom detail maximum metric by which you can drill down. Commits the metric data to
the specified flow interface.
metric_name: String

The name of the detail maximum metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddSampleset(metric_name: String, val: Number, options: Object):void

Creates a custom top-level sampleset metric. Commits the metric data to the specified flow
interface.
metric_name: String

The name of the top-level sampleset metric.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDetailSampleset(metric_name: String, key: String | IPAddress, val: Number,
options: Object):void

Creates a custom detail sampleset metric by which you can drill down. Commits the metric data to
the specified flow interface.
metric_name: String

The name of the detail sampleset metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

ExtraHop 25.2 Trigger API Reference 57

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddSnap(metric_name: String, count: Number, options: Object):void

Creates a custom top-level snapshot metric. Commits the metric data to the specified flow interface.
metric_name: String

The name of the top-level snapshot metric.
count: Number

The observed value, such as current established connections. Must be a non-zero, positive
signed 64-bit integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDetailSnap(metric_name: String, key: String | IPAddress, count: Number,
options: Object):void

Creates a custom detail snapshot metric by which you can drill down. Commits the metric data to the
specified flow interface.
metric_name: String

The name of the detail sampleset metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
count: Number

The observed value, such as current established connections. Must be a non-zero, positive
signed 64-bit integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.

Instance properties
id: String

A string that uniquely identifies the flow interface.
number: Number

The flow interface number reported by the NetFlow record.

FlowNetwork

The FlowNetwork class enables you to retrieve flow network attributes and to add custom metrics at the
flow network level.

Methods
FlowNetwork(id: string)

A constructor for the FlowNetwork object that accepts a flow network ID. An error occurs if the
flow network ID does not exist on the ExtraHop system.

ExtraHop 25.2 Trigger API Reference 58

Instance methods

The methods in this section enable you to create custom metrics on a flow network. The methods are
present only on instances of the NetFlow class. For example, the following statement collects metrics from
NetFlow traffic on an individual network:

NetFlow.network.metricAddCount("slow_rsp", 1);

However, you can call the FlowNetwork method as a static method on NETFLOW_RECORD events. For
example, the following statement collects metrics from NetFlow traffic on both devices on the flow
network:

FlowNetwork.metricAddCount("slow_rsp", 1);

metricAddCount(metric_name: String, count: Number, options: Object):void
Creates a custom top-level count metric. Commits the metric data to the specified flow network.
metric_name: String

The name of the top-level count metric.
count: Number

The increment value. Must be a non-zero, positive signed 64-bit integer. A NaN value is
silently discarded.

options: Object
An optional object that can contain the following property:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDetailCount(metric_name: String, key: String | IPAddress, count: Number,
options: Object):void

Creates a custom detail count metric by which you can drill down. Commits the metric data to the
specified flow network.
metric_name: String

The name of the detail count metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
count: Number

The increment value. Must be a non-zero, positive signed 64-bit integer. A NaN value is
silently discarded.

options: Object
An optional object that can contain the following property:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDataset(metric_name: String, val: Number, options: Object):void

Creates a custom top-level dataset metric. Commits the metric data to the specified flow network.
metric_name: String

The name of the top-level dataset metric.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:

ExtraHop 25.2 Trigger API Reference 59

freq: Number
An option that enables you to simultaneously record multiple occurrences of particular
values in the dataset when set to the number of occurrences specified by the val
parameter. If no value is specified, the default value is 1.

highPrecision: Boolean
A flag that enables one-second granularity for the custom metric when set to true.

metricAddDetailDataset(metric_name: String, key: String | IPAddress, val: Number,
options: Object):void

Creates a custom detail dataset metric by which you can drill down. Commits the metric data to the
specified flow network.
metric_name: String

The name of the detail count metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
freq: Number

An option that enables you to simultaneously record multiple occurrences of particular
values in the dataset when set to the number of occurrences specified by the val
parameter. If no value is specified, the default value is 1.

highPrecision: Boolean
A flag that enables one-second granularity for the custom metric when set to true.

metricAddDistinct(metric_name: String, item: Number | String | IPAddress:void
Creates a custom top-level distinct count metric. Commits the metric data to the specified flow
network.
metric_name: String

The name of the top-level distinct count metric.
item: Number | String | IPAddress

The value to be placed into the set. The value is converted to a string before it is placed in the
set.

metricAddDetailDistinct(metric_name: String, key: String | IPAddress, item: Number |
String | IPAddress:void

Creates a custom detail distinct count metric by which you can drill down. Commits the metric data
to the specified flow network.
metric_name: String

The name of the detail distinct count metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
item: Number | String | IPAddress

The value to be placed into the set. The value is converted to a string before it is placed in the
set.

metricAddMax(metric_name: String, val: Number, options: Object):void
Creates a custom top-level maximum metric. Commits the metric data to the specified flow network.

ExtraHop 25.2 Trigger API Reference 60

metric_name: String
The name of the top-level maximum metric.

val: Number
The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDetailMax(metric_name: String, key: String | IPAddress, val: Number,
options: Object):void

Creates a custom detail maximum metric by which you can drill down. Commits the metric data to
the specified flow network.
metric_name: String

The name of the detail maximum metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddSampleset(metric_name: String, val: Number, options: Object):void

Creates a custom top-level sampleset metric. Commits the metric data to the specified flow network.
metric_name: String

The name of the top-level sampleset metric.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDetailSampleset(metric_name: String, key: String | IPAddress, val: Number,
options: Object):void

Creates a custom detail sampleset metric by which you can drill down. Commits the metric data to
the specified flow network.
metric_name: String

The name of the detail sampleset metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

ExtraHop 25.2 Trigger API Reference 61

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddSnap(metric_name: String, count: Number, options: Object):void

Creates a custom top-level snapshot metric. Commits the metric data to the specified flow network.
metric_name: String

The name of the top-level snapshot metric.
count: Number

The observed value, such as current established connections. Must be a non-zero, positive
signed 64-bit integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDetailSnap(metric_name: String, key: String | IPAddress, count: Number,
options: Object):void

Creates a custom detail snapshot metric by which you can drill down. Commits the metric data to the
specified flow network.
metric_name: String

The name of the detail sampleset metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
count: Number

The observed value, such as current established connections. Must be a non-zero, positive
signed 64-bit integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.

Instance properties
id: String

A string that uniquely identifies the flow network.
ipaddr: IPAddress

The IP address of the management interface on the flow network.

GeoIP

The GeoIP class enables you to retrieve the approximate country-level or city-level location of a specific
address.

Methods

Values returned by GeoIP methods are obtained from the MaxMind GeoLite2 country or city databases
unless configured otherwise by the Geomap Data Source settings in the Administration settings.

https://dev.maxmind.com/geoip/docs/databases/city-and-country/
https://docs.extrahop.com/25.2/eh-admin-ui-guide/#geomap-data-source

ExtraHop 25.2 Trigger API Reference 62

From the Geomap Data Source settings, you can upload custom databases and specify which database to
reference by default for city or country lookups.

We recommend uploading only a custom city-level database if you intend to call both
GeoIP.getCountry() and GeoIP.getPreciseLocation() methods in triggers. If both types of
custom databases are uploaded, the ExtraHop system retrieves values for both methods from the city-
level database and ignores the country-level database, which is considered to be a subset of the city-level
database.

getCountry(ipaddr: IPAddress): Object
Returns country-level detail for the specified IPAddress in an object that contains the following
fields:
continentName: String

The name of the continent, such as Europe, that is associated with the country from which
the specified IP address originates. The value is the same as the continentName field
returned by the getPreciseLocation() method.

continentCode: Number
The code of the continent, such as EU, that is associated with the value of the countryCode
field, according to ISO 3166. The value is the same as the continentCode field returned by
the getPreciseLocation() method.

countryName: String
The name of the country from which the specified IP address originates, such as
United States. The value is the same as the countryName field returned by the
getPreciseLocation() method.

countryCode: String
The code associated with the country, according to ISO 3166, such as US. The value is the
same as the countryCode field returned by the getPreciseLocation() method.

Returns null in any field for which no data is available, or returns a null object if all field data is
unavailable.

Note: The getCountry() method requires 20 MB of total RAM on the ExtraHop
system, which might affect system performance. The first time this method is
called in any trigger, the ExtraHop system reserves the required amount of RAM
unless the getPreciseLocation() method has already been called. The
getPreciseLocation() method requires 100 MB of RAM, so adequate RAM
will already be available to call the getCountry() method. The required amount
of RAM is not per trigger or per method call; the ExtraHop system only reserves
the required amount of RAM one time.

In the following code example, the getCountry() method is called on each specified event and
retrieves rough location data for each client IP address:

// ignore if the IP address is non-routable
if (Flow.client.ipaddr.isRFC1918) return;
var results=GeoIP.getCountry(Flow.client.ipaddr);
if (results) {
 countryCode=results.countryCode;
 // log the 2-letter country code of each IP address
 debug ("Country Code is " + results.countryCode);
}

getPreciseLocation(ipaddr: IPAddress): Object
Returns city-level detail for the specified IPAddress in an object that contains the following fields:

ExtraHop 25.2 Trigger API Reference 63

continentName: String
The name of the continent, such as Europe, that is associated with the country from which
the specified IP address originates. The value is the same as the continentName field
returned by the getCountry() method.

continentCode: Number
The code of the continent, such as EU, that is associated with the value of the countryCode
field, according to ISO 3166. The value is the same as the continentCode field returned by
the getCountry() method.

countryName: String
The name of the country from which the specified IP address originates, such as United
States. The value is the same as the countryName field returned by the getCountry()
method.

countryCode: String
The code associated with the country, according to ISO 3166, such as US. The value is the
same as the countryCode field returned by the getCountry() method.

region: String
The region, such as a state or province, such as Washington.

city: String
The city from which the IP address originates, such as Seattle.

latitude: Number
The latitude of the IP address location.

longitude: Number
The longitude of the of the IP address location.

radius: Number
The radius, expressed in kilometers, around the longitude and latitude coordinates of the IP
address location.

Returns null in any field for which no data is available, or returns a null object if all field data is
unavailable.

Note: The getPreciseLocation() method requires 100 MB of total RAM on
the ExtraHop system, which might affect system performance. The first time
this method is called in any trigger, the ExtraHop system reserves the required
amount of RAM unless the getCountry() method has already been called. The
getCountry() method requires 20 MB of RAM, so the ExtraHop system reserves
an additional 80 MB of RAM. The required amount of RAM is not per trigger or per
method call; the ExtraHop system only reserves the required amount of RAM one
time.

IPAddress

The IPAddress class enables you to retrieve IP address attributes. The IPAddress class is also available as
a property for the Flow class.

Methods
IPAddress(ip: String | Number, mask: Number)

Constructor for the IPAddress class that takes two parameters:
ip: String

The IP address string in CIDR format.

ExtraHop 25.2 Trigger API Reference 64

mask: Number
The optional subnet mask in a numerical format, representing the number of leftmost '1' bits
in the mask (optional).

Instance methods
equals(equals: IPAddress): Boolean

Performs an equality test between IPAddress objects as shown in the following example:

if (Flow.client.ipaddr.toString() === "10.10.10.10")
{ // perform a task }

mask(mask: Number): IPAddress
Sets the subnet mask of the IPAddress object as shown in the following example:

if ((Flow.ipaddr1.mask(24).toString() === "173.194.33.0")||
(Flow.ipaddr2.mask(24).toString() === "173.194.33.0"))
{Flow.setApplication("My L4 App");}

The mask parameter specifies the subnet mask in a numerical format, representing the number of
leftmost '1' bits in the mask (optional).

toJSON(): String
Converts the IPAddress object to JSON format.

toString(): String
Converts the IPAddress object to a printable string.

Properties
hostNames: Array of Strings

An array of hostnames associated with the IPAddress.
isBroadcast: Boolean

The value is true if the IP address is a broadcast address.
isExternal: Boolean

The value is true if the IP address is external to your network.
isLinkLocal: Boolean

The value is true if the IP address is a link local address such as (169.254.0.0/16).
isMulticast: Boolean

The value is true if the IP address is a multicast address.
isRFC1918: Boolean

The value is true if the IP address belongs to one of the RFC1918 private IP ranges (10.0.0.0/8,
172.16.0.0/12, 192.168.0.0/16). The value is always false for IPv6 addresses.

isV4: Boolean
The value is true if the IP address is an IPv4 address.

isV6: Boolean
The value is true if the IP address is an IPv6 address.

localityName: String | null
The name of the network locality that the IP address is in. If the IP address is not in any network
locality, the value is null.

ExtraHop 25.2 Trigger API Reference 65

Network

The Network class enables you to add custom metrics at the global level.

Methods
metricAddCount(metric_name: String, count: Number, options: Object):void

Creates a custom top-level count metric. Commits the metric data to the specified network.
metric_name: String

The name of the top-level count metric.
count: Number

The increment value. Must be a non-zero, positive signed 64-bit integer. A NaN value is
silently discarded.

options: Object
An optional object that can contain the following property:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDetailCount(metric_name: String, key: String | IPAddress, count: Number,
options: Object):void

Creates a custom detail count metric by which you can drill down. Commits the metric data to the
specified network.
metric_name: String

The name of the detail count metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
count: Number

The increment value. Must be a non-zero, positive signed 64-bit integer. A NaN value is
silently discarded.

options: Object
An optional object that can contain the following property:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDataset(metric_name: String, val: Number, options: Object):void

Creates a custom top-level dataset metric. Commits the metric data to the specified network.
metric_name: String

The name of the top-level dataset metric.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
freq: Number

An option that enables you to simultaneously record multiple occurrences of particular
values in the dataset when set to the number of occurrences specified by the val
parameter. If no value is specified, the default value is 1.

highPrecision: Boolean
A flag that enables one-second granularity for the custom metric when set to true.

ExtraHop 25.2 Trigger API Reference 66

metricAddDetailDataset(metric_name: String, key: String | IPAddress, val: Number,
options: Object):void

Creates a custom detail dataset metric by which you can drill down. Commits the metric data to the
specified network.
metric_name: String

The name of the detail count metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
freq: Number

An option that enables you to simultaneously record multiple occurrences of particular
values in the dataset when set to the number of occurrences specified by the val
parameter. If no value is specified, the default value is 1.

highPrecision: Boolean
A flag that enables one-second granularity for the custom metric when set to true.

metricAddDistinct(metric_name: String, item: Number | String | IPAddress:void
Creates a custom top-level distinct count metric. Commits the metric data to the specified network.
metric_name: String

The name of the top-level distinct count metric.
item: Number | String | IPAddress

The value to be placed into the set. The value is converted to a string before it is placed in the
set.

metricAddDetailDistinct (metric_name: String, key: String | IPAddress, item: Number | String | IPAddress:void
Creates a custom detail distinct count metric by which you can drill down. Commits the metric data
to the specified network.
metric_name: String

The name of the detail distinct count metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
item: Number | String | IPAddress

The value to be placed into the set. The value is converted to a string before it is placed in the
set.

metricAddMax(metric_name: String, val: Number, options: Object):void
Creates a custom top-level maximum metric. Commits the metric data to the specified network.
metric_name: String

The name of the top-level maximum metric.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.

ExtraHop 25.2 Trigger API Reference 67

metricAddDetailMax(metric_name: String, key: String | IPAddress, val: Number,
options: Object):void

Creates a custom detail maximum metric by which you can drill down. Commits the metric data to
the specified network.
metric_name: String

The name of the detail maximum metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddSampleset(metric_name: String, val: Number, options: Object):void

Creates a custom top-level sampleset metric. Commits the metric data to the specified network.
metric_name: String

The name of the top-level sampleset metric.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDetailSampleset(metric_name: String, key: String | IPAddress, val: Number,
options: Object):void

Creates a custom detail sampleset metric by which you can drill down. Commits the metric data to
the specified network.
metric_name: String

The name of the detail sampleset metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
val: Number

The observed value, such as a processing time. Must be a non-zero, positive signed 64-bit
integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddSnap(metric_name: String, count: Number, options: Object):void

Creates a custom top-level snapshot metric. Commits the metric data to the specified network.
metric_name: String

The name of the top-level snapshot metric.

ExtraHop 25.2 Trigger API Reference 68

count: Number
The observed value, such as current established connections. Must be a non-zero, positive
signed 64-bit integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.
metricAddDetailSnap(metric_name: String, key: String | IPAddress, count: Number,
options: Object):void

Creates a custom detail snapshot metric by which you can drill down. Commits the metric data to the
specified network.
metric_name: String

The name of the detail sampleset metric.
key: String | IPAddress

The key specified for the detail metric. A null value is silently discarded.
count: Number

The observed value, such as current established connections. Must be a non-zero, positive
signed 64-bit integer. A NaN value is silently discarded.

options: Object
An optional object that can contain the following properties:
highPrecision: Boolean

A flag that enables one-second granularity for the custom metric when set to true.

Trigger Examples

• Example: Parse syslog over TCP with universal payload analysis
• Example: Record data to a session table
• Example: Track SOAP requests

Session

The Session class provides access to the session table. It is designed to support coordination across
multiple independently executing triggers. The session table's global state means any changes by a trigger
or external process become visible to all other users of the session table. Because the session table is in-
memory, changes are not saved when you restart the ExtraHop system or the capture process.

Here are some important things to know about session tables:

• The session table supports ordinary JavaScript values, enabling you to add JS objects to the table.
• Session table entries can be evicted when the table grows too large or when the configured expiration

is reached.
• Because the session table on a sensor is not shared with the console, the values in the session table are

not shared with other connected sensors.
• The ExtraHop Open Data Context API exposes the session table via the management network,

enabling coordination with external processes through the memcache protocol.

Events

The Session class is not limited only to the SESSION_EXPIRE event. You can apply the Session class to any
ExtraHop event.

ExtraHop 25.2 Trigger API Reference 69

SESSION_EXPIRE

Runs periodically (in approximately 30 second increments) as long as the session table is in use.
When the SESSION_EXPIRE event fires, keys that have expired in the previous 30 second interval
are available through the Session.expiredKeys property.

The SESSION_EXPIRE event is not associated with any particular flow, so triggers on
SESSION_EXPIRE events cannot commit device metrics through Device.metricAdd*()
methods or Flow.client.device.metricAdd*() methods. To commit device metrics on this
event, you must add Device objects to the session table through the Device() instance method.

Note: You cannot assign triggers that run only on this event to specific devices or device
groups. Triggers that run on this event will run whenever this event occurs.

TIMER_30SEC

Runs exactly every 30 seconds. This event enables you to perform periodic processing, such as
regularly accessing session table entries added through the Open Data Context API .

Note: You can apply any trigger class to the TIMER_30SEC event.

Note: You cannot assign triggers that run only on this event to specific devices or device
groups. Triggers that run on this event will run whenever this event occurs.

Methods
add(key: String, value*, options: Object): *

Adds the specified key in the session table. If the key is present, the corresponding value is returned
without modifying the key entry in the table. If the key is not present, a new entry is created for the
key and value, and the new value is returned.

You can configure an optional Options object for the specified key.
getOptions(key: String): Object

Returns the Options object for the specified key. You configure options during calls to
Session.add(), Session.modify(), or Session.replace().

increment(key: String, count: Number): Number | null
Looks up the specified key and increments the key value by the specified number. The default value
of the optional count parameter is 1. Returns the new key value if the call is successful. Returns
null if the lookup fails. Returns an error if the key value is not a number.

lookup(key: String): *
Looks up the specified key in the session table and returns the corresponding value. Returns null if
the key is not present.

modify(key: String, value: *, options: Object): *
Modifies the specified key value, if the key is present in the session table, and returns the previous
value. If the key is not present, no new entry is created.

If changes to the optional Options object are included, the key options are updated. and old options
are merged with new ones. If the expire option is modified, the expiration timer is reset.

remove(key: String): *
Removes the entry for the given key and returns the associated value.

replace(key: String, value: *, options: Object): *
Updates the entry associated with the given key. If the key is present, update the value and return
the previous value. If the key is not present, add the entry and return the previous value (null).

If changes to the optional Options object are included, the key options are updated, and old options
are merged with new ones. If the expire option is provided, the expiration timer is reset.

https://docs.extrahop.com/25.2/import-external-data-odcapi

ExtraHop 25.2 Trigger API Reference 70

Options
expire: Number

The duration after which eviction occurrs, expressed in seconds. If the value is null or undefined,
the entry is evicted only when the session table grows too large.

notify: Boolean
Indicates whether the key is available on SESSION_EXPIRE events. The default value is false.

priority: String
Priority level that determines which entries to evict if the session table grows too large. Valid
values are PRIORITY_LOW, PRIORITY_NORMAL, and PRIORITY_HIGH. The default value is
PRIORITY_NORMAL.

Constants
PRIORITY_LOW: Number

The numeric representation of the lowest priority level. The value is 0. Priority levels determine the
order that entries are removed from the session table if the table grows too large.

PRIORITY_NORMAL: Number
The numeric representation of the default priority level. The value is 1. Priority levels determine the
order that entries are removed from the session table if the table grows too large.

PRIORITY_HIGH: Number
The numeric representation of the highest priority level. The value is 2. Priority levels determine the
order that entries are removed from the session table if the table grows too large.

Properties
expiredKeys: Array

An array of objects with the following properties:
age: Number

The age of the expired object, expressed in milliseconds. Age is the amount of time elapsed
between when the object in the session table was added or the expire option of the object
was modified, and the SESSION_EXPIRE event. The age determines whether the key was
evicted or expired.

name: String
The key of the expired object.

value: Number | String | IPAddress | Boolean | Device
The value of the entry in the session table.

Expired keys include keys that were evicted because the table grew too large.

The expiredKeys property can be accessed only on SESSION_EXPIRE events; otherwise, an error
will occur.

Trigger Examples

• Example: Record data to a session table

System

The System class enables you to retrieve information about the sensor or console on which a trigger is
running. This information in useful in environments with multiple sensors.

ExtraHop 25.2 Trigger API Reference 71

Properties
uuid: String

The universally unique identifier (UUID) of the sensor or console.
ipaddr: IPAddress

The IPAddress object of the primary management interface (Interface 1) on the sensor.
hostname: String

The hostname for the sensor or console configured in the Administration settings.
version: String

The firmware version running on the sensor or console.

ThreatIntel

The ThreatIntel class enables you to see whether threats have been found for IP addresses, hostnames,
or URIs. (ExtraHop RevealX Premium and Ultra only)

Methods
hasIP(address: IPAddress): boolean

The value is true if the threats have been found for the specified IP address. If no intelligence
information is available on the ExtraHop system, the value is null.

hasDomain(domain: String): boolean
The value is true if the threats have been found for the specified domain. If no intelligence
information is available on the ExtraHop system, the value is null.

hasURI(uri: String): boolean
The value is true if the threats have been found for the specified URI. If no intelligence information
is available on the ExtraHop system, the value is null.

Properties
isAvailable: boolean

The value is true if threat intelligence information is available on the ExtraHop system.

Trigger

The Trigger class enables you to access details about a running trigger.

Properties
isDebugEnabled: boolean

The value is true if debugging is enabled for the trigger. The value is determined by the state of the
Enable debug log checkbox in the Edit Trigger pane in the ExtraHop system.

VLAN

The VLAN class represents a VLAN on the network.

Instance properties
id: Number

The numerical ID for a VLAN.

ExtraHop 25.2 Trigger API Reference 72

Protocol and network data classes
The Trigger API classes in this section enable you to access properties and record metrics from protocol,
message, and flow activity that occurs on the ExtraHop ExtraHop system.

Class Description

AAA Enables you to store metrics and access properties
on AAA_REQUEST or AAA_RESPONSE events.

ActiveMQ Enables you to store metrics and access properties
on ACTIVEMQ_MESSAGE events.

AJP The AJP class enables you to store metrics
and access properties on AJP_REQUEST and
AJP_RESPONSE events.

CDP The CDP class enables you to store metrics and
access properties on CDP_FRAME events.

CIFS Enables you to store metrics and access properties
on CIFS_REQUEST and CIFS_RESPONSE events.

DB Enables you to store metrics and access properties
on DB_REQUEST and DB_RESPONSE events.

DHCP Enables you to store metrics and access properties
on DHCP_REQUEST and DHCP_RESPONSE events.

DICOM Enables you to store metrics and access properties
on DICOM_REQUEST and DICOM_RESPONSE
events.

DNS Enables you to store metrics and access properties
on DNS_REQUEST and DNS_RESPONSE events.

FIX Enables you to store metrics and access properties
on FIX_REQUEST and FIX_RESPONSE events.

FTP Enables you to store metrics and access properties
on FTP_REQUEST and FTP_RESPONSE events.

HL7 Enables you to store metrics and access properties
on HL7_REQUEST and HL7_RESPONSE events.

HTTP Enables you to store metrics and access properties
on HTTP_REQUEST and HTTP_RESPONSE events.

IBMMQ Enables you to store metrics and access properties
on IBMMQ_REQUEST and IBMMQ_RESPONSE
events.

ICA Enables you to store metrics and access properties
on ICA_OPEN, ICA_AUTH, ICA_TICK, and
ICA_CLOSE events.

ICMP Enables you to store metrics and access properties
on ICMP_MESSAGE events.

ExtraHop 25.2 Trigger API Reference 73

Class Description

Kerberos Enables you to store metrics and access
properties on KERBEROS_REQUEST and
KERBEROS_RESPONSE events.

LDAP Enables you to store metrics and access properties
on LDAP_REQUEST and LDAP_RESPONSE events.

LLDP Enables you to access properties on LLDP_FRAME
events.

Memcache Enables you to store metrics and access
properties on MEMCACHE_REQUEST and
MEMCACHE_RESPONSE events.

Modbus Enables you to store metrics and access properties
on MODBUS_REQUEST and MODBUS_RESPONSE
events.

MongoDB The MongoDB class enables you to store metrics
and access properties on MONGODB_REQUEST and
MONGODB_RESPONSE events.

MSMQ The MSMQ class enables you to store metrics and
access properties on MSMQ_MESSAGE event.

NetFlow Enables you to store metrics and access properties
on NETFLOW_RECORD events.

NFS Enables you to store metrics and access properties
on NFS_REQUEST and NFS_RESPONSE events.

NTLM Enables you to store metrics and access properties
on NTLM_MESSAGE events.

POP3 Enables you to store metrics and access properties
on POP3_REQUEST and POP3_RESPONSE events.

RDP Enables you to store metrics and access properties
on RDP_OPEN, RDP_CLOSE, and RDP_TICK events.

Redis Enables you to store metrics and access properties
on REDIS_REQUEST and REDIS_RESPONSE
events.

RPC Enables you to store metrics and access properties
on RPC_REQUEST and RPC_RESPONSE events.

RTCP Enables you to store metrics and access properties
on RTCP_MESSAGE events.

RTP Enables you to store metrics and access properties
on RTP_OPEN, RTP_CLOSE, and RTP_TICK events.

SCCP Enables you to store metrics and access properties
on SCCP_MESSAGE events.

SDP Enables you to access properties on SIP_REQUEST
and SIP_RESPONSE events.

SFlow Enables you to store metrics and access properties
on SFLOW_RECORD events.

ExtraHop 25.2 Trigger API Reference 74

Class Description

SIP Enables you to store metrics and access properties
on SIP_REQUEST and SIP_RESPONSE events.

SMPP Enables you to store metrics and access properties
on SMPP_REQUEST and SMPP_RESPONSE events.

SMTP Enables you to store metrics and access properties
on SMTP_REQUEST and SMTP_RESPONSE events.

SSH Enables you to store metrics and access properties
on SSH_CLOSE, SSH_OPEN and SSH_TICK events.

SSL Enables you to store metrics and access
properties on SSL_OPEN, SSL_CLOSE,
SSL_ALERT, SSL_RECORD, SSL_HEARTBEAT, and
SSL_RENEGOTIATE events.

TCP Enables you to access properties and retrieve
metrics from TCP events and on FLOW_TICK and
FLOW_TURN events.

Telnet Enables you to store metrics and access properties
on TELNET_MESSAGE events.

Turn Enables you to store metrics and access properties
on FLOW_TURN events.

UDP Enables you to access properties and retrieve
metrics from UDP events and on FLOW_TICK and
FLOW_TURN events.

WebSocket Enables you to access properties on
WEBSOCKET_OPEN, WEBSOCKET_CLOSE, and
WEBSOCKET_MESSAGE events.

AAA

The AAA (Authentication, Authorization, and Accounting) class enables you to store metrics and access
properties on AAA_REQUEST or AAA_RESPONSE events.

Events
AAA_REQUEST

Runs when the ExtraHop system finishes processing an AAA request .
AAA_RESPONSE

Runs on every AAA response processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on either an AAA_REQUEST or AAA_RESPONSE event.

The event determines which properties are committed to the record object. To view the default
properties committed on each event, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

ExtraHop 25.2 Trigger API Reference 75

Properties
authenticator: String

The value of the authenticator field (RADIUS only).
avps: Array

An array of AVP objects with the following properties:
avpLength: Number

The size of the AVP, expressed in bytes. This value includes the AVP header data, as well as
the value.

id: Number
The numeric ID of the attribute represented as an integer.

isGrouped: Boolean
The value is true if this is a grouped AVP (Diameter only).

name: String
The name for the given AVP.

vendor: String
The vendor name for vendor AVPs (Diameter only).

value: String | Array | Number
For single AVPs, a string or numeric value. For grouped AVPs (Diameter only), an array of
objects.

isDiameter: Boolean
The value is true if the request or response is Diameter.

isError: Boolean
The value is true if the response is an error. To retrieve the error details in Diameter, check
AAA.statusCode. To retrieve the error details in RADIUS, check the AVP with code 18 (Reply-
Message).

Access only on AAA_RESPONSE events; otherwise, an error will occur.
isRadius: Boolean

The value is true if the request or response is RADIUS.
isRspAborted: Boolean

The value is true if the AAA_RESPONSE event is aborted.

Access only on AAA_RESPONSE events; otherwise, an error will occur.
method: Number

The method that corresponds to the command code in either RADIUS or Diameter.

The following table contains valid Diameter command codes:

Command name Abbr. Code

AA-Request AAR 265

AA-Answer AAA 265

Diameter-EAP-Request DER 268

Diameter-EAP-Answer DEA 268

Abort-Session-Request ASR 274

Abort-Session-Answer ASA 274

Accounting-Request ACR 271

ExtraHop 25.2 Trigger API Reference 76

Command name Abbr. Code

Credit-Control-Request CCR 272

Credit-Control-Answer CCA 272

Capabilities-Exchange-Request CER 257

Capabilities-Exchange-Answer CEA 257

Device-Watchdog-Request DWR 280

Device-Watchdog-Answer DWA 280

Disconnect-Peer-Request DPR 282

Disconnect-Peer-Answer DPA 282

Re-Auth-Answer RAA 258

Re-Auth-Request RAR 258

Session-Termination-Request STR 275

Session-Termination-Answer STA 275

User-Authorization-Request UAR 300

User-Authorization-Answer UAA 300

Server-Assignment-Request SAR 301

Server-Assignment-Answer SAA 301

Location-Info-Request LIR 302

Location-Info-Answer LIA 302

Multimedia-Auth-Request MAR 303

Multimedia-Auth-Answer MAA 303

Registration-Termination-Request RTR 304

Registration-Termination-Answer RTA 304

Push-Profile-Request PPR 305

Push-Profile-Answer PPA 305

User-Data-Request UDR 306

User-Data-Answer UDA 306

Profile-Update-Request PUR 307

Profile-Update-Answer PUA 307

Subscribe-Notifications-Request SNR 308

Subscribe-Notifications-Answer SNA 308

Push-Notification-Request PNR 309

Push-Notification-Answer PNA 309

Bootstrapping-Info-Request BIR 310

Bootstrapping-Info-Answer BIA 310

ExtraHop 25.2 Trigger API Reference 77

Command name Abbr. Code

Message-Process-Request MPR 311

Message-Process-Answer MPA 311

Update-Location-Request ULR 316

Update-Location-Answer ULA 316

Authentication-Information-Request AIR 318

Authentication-Information-Answer AIA 318

Notify-Request NR 323

Notify-Answer NA 323

The following table contains valid RADIUS command codes:

Command name Code

Access-Request 1

Access-Accept 2

Access-Reject 3

Accounting-Request 4

Accounting-Response 5

Access-Challenge 11

Status-Server (experimental) 12

Status-Client (experimental) 13

Reserved 255

processingTime: Number
The server processing time, expressed in milliseconds. The value is NaN if the timing is invalid.

Access only on AAA_RESPONSE events; otherwise, an error will occur.
record: Object

The record object that can be sent to the configured recordstore through a call to
AAA.commitRecord() on either an AAA_REQUEST or AAA_RESPONSE event.

The event on which the method was called determines which properties the default record object
can contain as displayed in the following table:

AAA_REQUEST AAA_RESPONSE

authenticator authenticator

clientIsExternal clientIsExternal

clientZeroWnd clientZeroWnd

method isError

receiverIsExternal isRspAborted

reqBytes method

reqL2Bytes processingTime

ExtraHop 25.2 Trigger API Reference 78

AAA_REQUEST AAA_RESPONSE

reqPkts receiverIsExternal

reqRTO roundTripTime

senderIsExternal rspBytes

serverIsExternal rspL2Bytes

serverZeroWnd rspPkts

txId rspRTO

statusCode

senderIsExternal

serverIsExternal

serverZeroWnd

txId

reqBytes: Number
The number of L4 request bytes, excluding L4 headers.

reqL2Bytes: Number
The number of L2 request bytes, including L2 headers.

reqPkts: Number
The number of request packets.

reqRTO: Number
The number of request retransmission timeouts (RTOs).

Access only on AAA_REQUEST events; otherwise, an error will occur.
reqZeroWnd: Number

The number of zero windows in the request.
roundTripTime: Number

The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last AAA_REQUEST or
AAA_RESPONSE event ran. The value is NaN if there are no RTT samples.

rspBytes: Number
The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

rspL2Bytes: Number
The number of L2 response bytes, including protocol overhead, such as headers.

rspPkts: Number
The number of response packets.

rspRTO: Number
The number of response retransmission timeouts (RTOs).

Access only on AAA_RESPONSE events; otherwise, an error will occur.
rspZeroWnd: Number

The number of zero windows in the response.

ExtraHop 25.2 Trigger API Reference 79

statusCode: String
A string representation of the AVP identifier 268 (Result-Code).

Access only on AAA_RESPONSE events; otherwise, an error will occur.
txId: Number

A value that corresponds to the hop-by-hop identifier in Diameter and msg-id in RADIUS.

ActiveMQ

The ActiveMQ class enables you to store metrics and access properties on ACTIVEMQ_MESSAGE events.
ActiveMQ is an implementation of the Java Messaging Service (JMS).

Events
ACTIVEMQ_MESSAGE

Runs on every JMS message processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on an ACTIVEMQ_MESSAGE event.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
correlationId: String

The JMSCorrelationID field of the message.
exceptionResponse: Object | Null

The JMSException field of the message. If the command of the message is not
ExceptionResponse, the value is null. The object contains the following fields:
message: String

The exception response message.
class: String

The subclass of the JMSException.
expiration: Number

The JMSExpiration field of the message.
msg: Buffer

The message body. For TEXT_MESSAGE format messages, this returns the body of the message as a
UTF-8 string. For all other message formats, this returns the raw bytes.

msgFormat: String
The message format. Possible values are:

• BYTES_MESSAGE

• MAP_MESSAGE

• MESSAGE

• OBJECT_MESSAGE

• STREAM_MESSAGE

• TEXT_MESSAGE

• BLOG_MESSAGE

ExtraHop 25.2 Trigger API Reference 80

msgId: String
The JMSMessageID field of the message.

persistent: Boolean
The value is true if the JMSDeliveryMode is PERSISTENT.

priority: Number
The JMSPriority field of the message.

• 0 is the lowest priority.
• 9 is the highest priority.
• 0-4 are gradations of normal priority.
• 5-9 are gradations of expedited priority.

properties: Object
Zero or more properties attached to the message. The keys are arbitrary strings and the values may
be booleans, numbers, or strings.

queue: String
The JMSDestination field of the message.

receiverBytes: Number
The number of application-level bytes from the receiver.

receiverIsBroker: Boolean
The value is true if the flow-level receiver of the message is a broker.

receiverL2Bytes: Number
The number of L2 bytes from the receiver.

receiverPkts: Number
The number of packets from the receiver.

receiverRTO: Number
The number of RTOs from the receiver.

receiverZeroWnd: Number
The number of zero windows sent by the receiver.

record: Object
The record object that can be sent to the configured recordstore through a call to
ActiveMQ.commitRecord() on an ACTIVEMQ_MESSAGE event.

The default record object can contain the following properties:

• clientIsExternal

• correlationId

• expiration

• msgFormat

• msgId

• persistent

• priority

• queue

• receiverBytes

• receiverIsBroker

• receiverIsExternal

• receiverL2Bytes

• receiverPkts

• receiverRTO

• receiverZeroWnd

ExtraHop 25.2 Trigger API Reference 81

• redeliveryCount

• replyTo

• roundTripTime

• senderBytes

• senderIsBroker

• senderIsExternal

• senderL2Bytes

• senderPkts

• senderRTO

• senderZeroWnd

• serverIsExternal

• timeStamp

• totalMsgLength

redeliveryCount: Number
The number of redeliveries.

replyTo: String
The JMSReplyTo field of the message, converted to a string.

roundTripTime: Number
The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last ACTIVEMQ_MESSAGE
event ran. The value is NaN if there are no RTT samples.

senderBytes: Number
The number of application-level bytes from the sender.

senderIsBroker: Boolean
The value is true if the flow-level sender of the message is a broker.

senderL2Bytes: Number
The number of L2 bytes from the sender.

senderPkts: Number
The number of packets from the sender.

senderRTO: Number
The number of RTOs from the sender.

senderZeroWnd: Number
The number of zero windows sent by the sender.

timestamp: Number
The time when the message was handed off to a provider to be sent, expressed in GMT. This is the
JMSTimestamp field of the message.

totalMsgLength: Number
The length of the message, expressed in bytes.

AJP

Apache JServ Protocol (AJP) proxies inbound requests from a web server to an application server and is
often applied to load-balanced environments where one or more front-end web servers feed requests
into one or more application servers. The AJP class enables you to store metrics and access properties on
AJP_REQUEST and AJP_RESPONSE events.

ExtraHop 25.2 Trigger API Reference 82

Events
AJP_REQUEST

Runs after the web server sends an AJP Forward Request message to a servlet container, and then
transfers any subsequent request body.

AJP_RESPONSE

Runs after a servlet container sends an AJP End Response message to signal that the servlet
container has finished processing an AJP Forward Request and has sent back the requested
information.

Methods
commitRecord(): Void

Sends a record to the configured recordstore on an AJP_RESPONSE event. Record commits on
AJP_REQUEST events are not supported.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

findHeaders(name: String): Array
Accesses AJP header values and returns an array of header objects (with name and value
properties) where the names match the prefix of the specified string. Accesses request headers on
AJP_REQUEST events and response headers on AJP_RESPONSE requests.

Properties
attributes: Object

An array of optional AJP attributes sent with the request, such as remote_user, auth_type,
query_string, jvm_route, ssl_cert, ssl_cipher, and ssl_session.

Access only on AJP_REQUEST events; otherwise, an error will occur.
fwdReqClientAddr: IPAddress

The IPAddress of the HTTP client that made the original request to the server. The value is null if
the available information cannot be parsed to an IP address.

fwdReqHost: String
The HTTP host specified by the HTTP client that made the original request to the server.

fwdReqIsEncrypted: Boolean
The value is true if TLS encryption was applied by the HTTP client that made the original request to
the server.

fwdReqServerName: String
The name of the server to which the HTTP client made the original request.

fwdReqServerPort: Number
The TCP port on the server to which the HTTP client made the original request.

headers: Object
When accessed on AJP_REQUEST events, an array of header names and values sent with the
request.

When accessed on AJP_RESPONSE events, an array of headers conveyed in the AJP Send Headers
message by the server to the end user browser.

method: String
The HTTP method of the request, such as POST or GET, from the server to the servlet container.

ExtraHop 25.2 Trigger API Reference 83

processingTime: Number
The time between the last byte of the request received and the first byte of the response payload
sent, expressed in milliseconds. The value is NaN on malformed and aborted responses or if the
timing is invalid.

Access only on AJP_RESPONSE events; otherwise, an error will occur.
protocol: String

The protocol of the request from the server to the servlet container. Not set for other message
types.

record: Object
The record object that can be sent to the configured recordstore through a call to
AJP.commitRecord() on an AJP_RESPONSE event.

The default record object can contain the following properties:

• clientIsExternal

• fwdReqClientAddr

• fwdReqHost

• fwdReqIsEncrypted

• fwdReqServerName

• fwdReqServerPort

• method

• processingTime

• protocol

• receiverIsExternal

• reqSize

• rspSize

• statusCode

• senderIsExternal

• serverIsExternal

• uri

Access only on AJP_RESPONSE events; otherwise, an error will occur.
reqBytes: Number

The number of L4 request bytes, excluding L4 headers.

Access only on AJP_RESPONSE events; otherwise, an error will occur.
reqL2Bytes: Number

The number of L2 request bytes, including L2 headers.
reqPkts: Number

The number of request packets.
reqRTO: Number

The number of request retransmission timeouts (RTOs).
reqSize: Number

The number of L7 request bytes, excluding AJP headers.
rspBytes: Number

The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

Access only on AJP_RESPONSE events; otherwise, an error will occur.
rspL2Bytes: Number

The number of L2 response bytes, including protocol overhead, such as headers.

ExtraHop 25.2 Trigger API Reference 84

Access only on AJP_RESPONSE events; otherwise, an error will occur.
rspPkts: Number

The number of response packets.

Access only on AJP_RESPONSE events; otherwise, an error will occur.
rspRTO: Number

The number of response retransmission timeouts (RTOs).

Access only on AJP_RESPONSE events; otherwise, an error will occur.
rspSize: Number

The number of L7 response bytes, excluding AJP headers.

Access only on AJP_RESPONSE events; otherwise, an error will occur.
statusCode: Number

The HTTP status code returned by the servlet container for responses to AJP Forward Request
messages.

Access only on AJP_RESPONSE events; otherwise, an error will occur.
uri: String

The URI for the request from the server to the servlet container. Not set for non-AJP message types.

BACnet
The Building Automation Control Network (BACnet) class enables you to store metrics and access
properties on BACNET_MESSAGE events.

Events
BACKNET_MESSAGE

Runs on every BACnet message processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on a BACNET_MESSAGE event. To view the default
properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
dstAddr: Buffer | Null

A Buffer object containing the address of the destination device. The value is null if the Network
Protocol Data Unit (NPDU) does not specify a destination address.

dstNetwork: Buffer | Null
A buffer object containing the ID of the destination network. The value is null if the NPDU does not
specify a destination network.

hopCount: Number | Null
A field specified in the network protocol data unit (NPDU) that tracks how many network hops the
BACnet message has passed through. The value starts at 255 and decrements with each network
hop.

ExtraHop 25.2 Trigger API Reference 85

invokeId: Number | Null
The ID of the BACnet request message, which correlates the request with the response. The value is
null if the request does not require a response.

pduType: String
The application protocol data unit (APDU) type.

record: Object
The record object that can be sent to the configured recordstore through a call to
BACnet.commitRecord() on a BACNET_MESSAGE event.

The default record object can contain the following properties:

• application

• dstAddr

• dstNetwork

• flowId

• hopCount

• invokeId

• pduType

• proto

• receiver

• receiverAddr

• receiverIsExternal

• receiverPort

• sender

• senderAddr

• senderIsExternal

• senderPort

• serviceChoice

• srcAddr

• srcNetwork

• vlan

serviceChoice: Number
The numeric identifier for the requested BACnet service.

srcAddr: Buffer | Null
A Buffer object that contains the address of the source device. The value is null if the NPDU does
not specify a source address.

srcNetwork: Buffer | Null
A Buffer object that contains the ID of the source network. The value is null if the NPDU does not
specify a source network.

CDP

Cisco Discovery Protocol (CDP) is a proprietary protocol that enables connected Cisco devices to send
information to each other. The CDP class enables you to access properties on CDP_FRAME events.

Events
CDP_FRAME

Runs on every CDP frame processed by the device.

ExtraHop 25.2 Trigger API Reference 86

Properties
destination: String

The destination MAC address. The most common destination is 01:00:0c:cc:cc:cc, indicating a
multicast address.

checksum: Number
The CDP checksum.

source: Device
The device sending the CDP frame.

ttl: Number
The time to live, expressed in seconds. This is the length of time during which the information in this
frame is valid, starting with when the information is received.

tlvs: Array of Objects
An array containing each type, length, value (TLV) field. A TLV field contains information such as the
device ID, address, and platform. Each field is an object with the following properties:
type: Number

The type of TLV.
value: Buffer

The value of the TLV.
version: Number

The CDP protocol version.

CIFS

The CIFS class enables you to store metrics and access properties on CIFS_REQUEST and
CIFS_RESPONSE events.

Events
CIFS_REQUEST

Runs on every SMB request processed by the device.
CIFS_RESPONSE

Runs on every SMB response processed by the device.

Note: The CIFS_RESPONSE event runs after every CIFS_REQUEST event, even if the
corresponding response is never observed by the ExtraHop system.

Methods
commitRecord(): void

Sends a record to the configured recordstore on a CIFS_RESPONSE event. Record commits on
CIFS_REQUEST events are not supported.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties

Important: Access time is the time it takes for a SMB server to receive a requested block. There
is no access time for operations that do not access actual block data within a file.
Processing time is the time it takes for a SMB server to respond to the operation
requested by the client, such as a metadata retrieval request.

ExtraHop 25.2 Trigger API Reference 87

There are no access times for SMB2_CREATE commands, which create a file that is
referenced in the response by an SMB2_FILEID command. The referenced file blocks
are then read from or written to the NAS-storage device. These file read and write
operations are calculated as access times.

accessMask: Number
A numeric representation of the hexadecimal number that specifies the access mask for the request.

Access only on CIFS_REQUEST events; otherwise, an error will occur.
accessTime: Number

The amount of time taken by the server to access a file on disk, expressed in milliseconds. For SMB,
this is the time from the first READ command in a SMB flow until the first byte of the response
payload. The value is NaN if the measurement or timing is invalid.

Access only on CIFS_RESPONSE events; otherwise, an error will occur.
createOptions: Number

A numeric representation of the hexadecimal number that specifies the options for creating or
opening a file.

Access only on CIFS_REQUEST events; otherwise, an error will occur.
dialect: String

The dialect of SMB negotiated between the client and the server.
encryptedBytes: Number

The number of encrypted bytes in the request or response.
encryptionProtocol: String

The protocol that the transaction is encrypted with.
error: String

The detailed error message recorded by the ExtraHop system.

Access only on CIFS_RESPONSE events; otherwise, an error will occur.
filename: String

The name of the file being transferred.
isCommandCreate: Boolean

The value is true if the message contains an SMB file creation command.
isCommandClose: Boolean

The value is true if the message contains an SMB CLOSE command.
isCommandDelete: Boolean

The value is true if the message contains an SMB DELETE command.
isCommandFileInfo: Boolean

The value is true if the message contains an SMB file info command.
isCommandLock: Boolean

The value is true if the message contains an SMB locking command.
isCommandRead: Boolean

The value is true if the message contains an SMB READ command.
isCommandRename: Boolean

The value is true if the message contains an SMB RENAME command.
isCommandWrite: Boolean

The value is true if the message contains an SMB WRITE command.

ExtraHop 25.2 Trigger API Reference 88

isDecrypted: Boolean
The value is true if the ExtraHop system securely decrypted and analyzed the transaction. Decrypted
traffic analysis can expose advanced threats that hide within encrypted traffic.

isEncrypted: Boolean
The value is true if the transaction is encrypted.

isRspAborted: Boolean
The value is true if the connection is closed before the SMB response was complete.

Access only on CIFS_RESPONSE events; otherwise, an error will occur.
isRspSigned: Boolean

The value is true if the response is signed by the SMB server.
method: String

The SMB method. Correlates to the methods listed under the SMB metric in the ExtraHop system.
msgID: Number

The SMB transaction identifier.
payload: Buffer

The Buffer object containing the payload bytes starting from the READ or WRITE command in the
SMB message.

The buffer contains the N first bytes of the payload, where N is the number of payload bytes
specified by the L7 Payload Bytes to Buffer option when the trigger was configured through the
ExtraHop WebUI. The default number of bytes is 2048. For more information, see Advanced trigger
options.

Note: The buffer cannot contain more than 4 KB, even if the L7 Payload Bytes to Buffer
option is set to a higher value.

For larger volumes of payload bytes, the payload might be spread across a series of READ or WRITE
commands so that no single trigger event contains the entire requested payload. You can reassemble
the payload into a single, consolidated buffer through the Flow.store and payloadOffset
properties.

payloadMediaType: String | Null
The type of media contained in the payload. The value is null if there is no payload or the media type
is unknown.

payloadOffset: Number
The file offset, expressed in bytes, within the resource property. The payload property is obtained
from the resource property at the offset.

payloadSHA256: String | Null
The hexadecimal representation of the SHA-256 hash of the payload. The string contains no
delimiters, as shown in the following example:

468c6c84db844821c9ccb0983c78d1cc05327119b894b5ca1c6a1318784d3675

If there is no payload, the value is null.
processingTime: Number

The server processing time, expressed in milliseconds. The value is NaN on malformed and aborted
responses or if the timing is invalid.

Access only on CIFS_RESPONSE events; otherwise, an error will occur.
record: Object

The record object that can be sent to the configured recordstore through a call to
CIFS.commitRecord on a CIFS_RESPONSE event.

ExtraHop 25.2 Trigger API Reference 89

The default record object can contain the following properties:

• accessTime

• clientIsExternal

• clientZeroWnd

• error

• isCommandCreate

• isCommandDelete

• isCommandFileInfo

• isCommandLock

• isCommandRead

• isCommandRename

• isCommandWrite

• isHighEntropy

• method

• processingTime

• receiverIsExternal

• reqPayloadMediaType

• reqPayloadSHA256

• reqSize

• reqXfer

• resource

• rspBytes

• rspPayloadMediaType

• rspPayloadSHA256

• rspXfer

• senderIsExternal

• serverIsExternal

• serverZeroWnd

• share

• statusCode

• user

• warning

Access only on CIFS_RESPONSE events; otherwise, an error will occur.
reqBytes: Number

The number of L4 request bytes, excluding L4 headers.

Access only on CIFS_RESPONSE events; otherwise, an error will occur.
reqL2Bytes: Number

The number of L2 request bytes, including L2 headers.

Access only on CIFS_RESPONSE events; otherwise, an error will occur.
reqPkts: Number

The number of request packets.

Access only on CIFS_RESPONSE events; otherwise, an error will occur.
reqRTO: Number

The number of request retransmission timeouts (RTOs).

Access only on CIFS_RESPONSE events; otherwise, an error will occur.
reqSize: Number

The number of L7 request bytes, excluding SMB headers.

ExtraHop 25.2 Trigger API Reference 90

reqTransferTime: Number
The request transfer time, expressed in milliseconds. If the request is contained in a single packet,
the transfer time is zero. If the request spans multiple packets, the value is the amount of time
between detection of the first SMB request packet and detection of the last packet by the ExtraHop
system. A high value might indicate a large SMB request or a network delay. The value is NaN if there
is no valid measurement, or if the timing is invalid.

Access only on CIFS_REQUEST events; otherwise, an error will occur.
reqVersion: String

The version of SMB running on the request.
reqZeroWnd: Number

The number of zero windows in the request.
resource: String

The share, path, and filename, concatenated together.
roundTripTime: Number

The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last CIFS_RESPONSE event
ran. The value is NaN if there are no RTT samples.

Access only on CIFS_RESPONSE events; otherwise, an error will occur.
rspBytes: Number

The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

Access only on CIFS_RESPONSE events; otherwise, an error will occur.
rspL2Bytes: Number

The number of L2 response bytes, including protocol overhead, such as headers.

Access only on CIFS_RESPONSE events; otherwise, an error will occur.
rspPkts: Number

The number of response packets.

Access only on CIFS_RESPONSE events; otherwise, an error will occur.
rspRTO: Number

The number of response retransmission timeouts (RTOs).

Access only on CIFS_RESPONSE events; otherwise, an error will occur.
rspSize: Number

The number of L7 response bytes, excluding SMB headers.

Access only on CIFS_RESPONSE events; otherwise, an error will occur.
rspTransferTime: Number

The response transfer time, expressed in milliseconds. If the response is contained in a single
packet, the transfer time is zero. If the response spans multiple packets, the value is the amount of
time between detection of the first SMB response packet and detection of the last packet by the
ExtraHop system. A high value might indicate a large SMB response or a network delay. The value is
NaN if there is no valid measurement, or if the timing is invalid.

Access only on CIFS_RESPONSE events; otherwise, an error will occur.
rspVersion: String

The version of SMB running on the response.

Access only on CIFS_RESPONSE events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 91

rspZeroWnd: Number
The number of zero windows in the response.

sessionId: Number
The ID of the SMB session.

share: String
The name of the share the user is connected to.

statusCode: Number
The numeric status code of the response (SMB1 and SMB2 only).

Access only on CIFS_RESPONSE events; otherwise, an error will occur.
user: String

The username, if available. In some cases, such as when the login event was not visible or the access
was anonymous, the username is not available.

warning: String
The detailed warning message recorded by the ExtraHop system.

Access only on CIFS_RESPONSE events; otherwise, an error will occur.

Trigger Examples

• Example: Monitor SMB actions on devices

DB

The DB, or database, class enables you to store metrics and access properties on DB_REQUEST and
DB_RESPONSE events.

Events
DB_REQUEST

Runs on every database request processed by the device.
DB_RESPONSE

Runs on every database response processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on a DB_RESPONSE event. Record commits on
DB_REQUEST events are not supported.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
appName: String

The client application name, which is extracted only for MS SQL connections.
correlationId: Number

The correlation ID for DB2 applications. The value is null for non-DB2 applications.
database: String

The database instance. In some cases, such as when login events are encrypted, the database name
is not available.

ExtraHop 25.2 Trigger API Reference 92

encryptionProtocol: String
The protocol that the transaction is encrypted with.

error: String
The detailed error messages recorded by the ExtraHop system in string format. If there are multiple
errors in one response, the errors are concatenated into one string.

Access only on DB_RESPONSE events; otherwise, an error will occur.
errors: Array of strings

The detailed error messages recorded by the ExtraHop system in array format. If there is only a
single error in the response, the error is returned as an array containing one string.

Access only on DB_RESPONSE events; otherwise, an error will occur.
isDecrypted: Boolean

The value is true if the ExtraHop system securely decrypted and analyzed the transaction. Decrypted
traffic analysis can expose advanced threats that hide within encrypted traffic.

isEncrypted: Boolean
The value is true if the transaction is encrypted.

isReqAborted: Boolean
The value is true if the connection is closed before the DB request is complete.

isRspAborted: Boolean
The value is true if the connection is closed before the DB response is complete.

Access only on DB_RESPONSE events; otherwise, an error will occur.
method: String

The database method that correlates to the methods listed under the Database metric in the
ExtraHop system.

params: Array
An array of remote procedure call (RPC) parameters that are only available for Microsoft SQL,
PostgreSQL, and DB2 databases.

The array contains each of the following parameters:

name: String
The optional name of the supplied RPC parameter.

value: String | Number
A text, integer, or time and date field. If the value is not a text, integer, or time and date field,
the value is converted into HEX/ASCII form.

The value of the params property is the same when accessed on either the DB_REQUEST or the
DB_RESPONSE event.

procedure: String
The stored procedure name. Correlates to the procedures listed under the Database methods in the
ExtraHop system.

processingTime: Number
The server processing time, expressed in milliseconds (equivalent to rspTimeToFirstByte -
reqTimeToLastByte). The value is NaN on malformed and aborted responses or if the timing is
invalid.

Access only on DB_RESPONSE events; otherwise, an error will occur.
record: Object

The record object that can be sent to the configured recordstore through a call to
DB.commitRecord on a DB_RESPONSE event.

ExtraHop 25.2 Trigger API Reference 93

The default record object can contain the following properties:

• appName
• clientIsExternal
• clientZeroWnd
• correlationId
• database
• error
• isReqAborted
• isRspAborted
• method
• procedure
• receiverIsExternal
• reqSize
• reqTimeToLastByte
• rspSize
• rspTimeToFirstByte
• rspTimeToLastByte
• processingTime
• senderIsExternal
• serverIsExternal
• serverZeroWnd
• statement
• table
• user

Access only on DB_RESPONSE events; otherwise, an error will occur.
reqBytes: Number

The number of L4 request bytes, excluding L4 headers.

Access only on DB_RESPONSE events; otherwise, an error will occur.
reqL2Bytes: Number

The number of L2 request bytes, including L2 headers.

Access only on DB_RESPONSE events; otherwise, an error will occur.
reqPkts: Number

The number of request packets.

Access only on DB_RESPONSE events; otherwise, an error will occur.
reqRTO: Number

The number of request retransmission timeouts (RTOs).

Access only on DB_RESPONSE events; otherwise, an error will occur.
reqSize: Number

The number of L7 request bytes, excluding database protocol headers.
reqTimeToLastByte: Number

The time from the first byte of the request until the last byte of the request, expressed in
milliseconds. Returns NaN on malformed and aborted requests or if the timing is invalid.

reqZeroWnd: Number
The number of zero windows in the request.

ExtraHop 25.2 Trigger API Reference 94

roundTripTime: Number
The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last DB_RESPONSE event
ran. The value is NaN if there are no RTT samples.

Access only on DB_RESPONSE events; otherwise, an error will occur.
rspBytes: Number

The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

Access only on DB_RESPONSE events; otherwise, an error will occur.
rspL2Bytes: Number

The number of L2 response bytes, including protocol overhead, such as headers.

Access only on DB_RESPONSE events; otherwise, an error will occur.
rspPkts: Number

The number of response packets.

Access only on DB_RESPONSE events; otherwise, an error will occur.
rspRTO: Number

The number of response retransmission timeouts (RTOs).

Access only on DB_RESPONSE events; otherwise, an error will occur.
rspSize: Number

The number of L7 response bytes, excluding database protocol headers.

Access only on DB_RESPONSE events; otherwise, an error will occur.
rspTimeToFirstByte: Number

The time from the first byte of the request until the first byte of the response, expressed in
milliseconds. The value is NaN on malformed and aborted responses or if the timing is invalid.

Access only on DB_RESPONSE events; otherwise, an error will occur.
rspTimeToLastByte: Number

The time from the first byte of the request until the last byte of the response, expressed in
milliseconds. The value is NaN on malformed and aborted responses or if the timing is invalid.

Access only on DB_RESPONSE events; otherwise, an error will occur.
rspZeroWnd: Number

The number of zero windows in the response.
serverVersion: String

The MS SQL server version.
statement: String

The full SQL statement, which might not be available for all database methods.
table: String

The name of the database table specified in the current statement. The following databases are
supported:

• Sybase

• Sybase IQ

• MySQL

• PostgreSQL

• IBM Informix

• MS SQL TDS

ExtraHop 25.2 Trigger API Reference 95

• Oracle TNS

• DB2

Returns an empty field if there is no table name in the request.
user: String

The username, if available. In some cases, such as when login events are encrypted, the username is
unavailable.

Trigger Examples

• Example: Collect response metrics on database queries
• Example: Create an application container

DHCP

The DHCP class enables you to store metrics and access properties on DHCP_REQUEST and
DHCP_RESPONSE events.

Events
DHCP_REQUEST

Runs on every DHCP request processed by the device.
DHCP_RESPONSE

Runs on every DHCP response processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on either a DHCP_REQUEST or DHCP_RESPONSE
event.

The event determines which properties are committed to the record object. To view the default
properties committed on each event, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

getOption(optionCode: Number): Object
Accepts a DHCP option code integer as input and returns an object containing the following fields:
code: Number

The DHCP option code.
name: String

The DHCP option name.
payload: Number | String

The type of payload returned will be whatever the type is for that specific option such as an
IP address, an array of IP addresses, or a buffer object.

Returns null if the specified option code is not present in the message.

Properties
chaddr: String

The client hardware address of the DHCP client.

ExtraHop 25.2 Trigger API Reference 96

clientReqDelay: Number
The time elapsed before the client attempts to acquire or renew a DHCP lease, expressed in
seconds.

Access only on DHCP_REQUEST events; otherwise, an error will occur.
error: String

The error message associated with option code 56. The value is null if there is no error.

Access only on DHCP_RESPONSE events; otherwise, an error will occur.
gwAddr: IPAddress

The IP address through which routers relay request and response messages.
htype: Number

The hardware type code.
msgType: String

The DHCP message type. Supported message types are:

• DHCPDISCOVER

• DHCPOFFER

• DHCPREQUEST

• DHCPDECLINE

• DHCPACK

• DHCPNAK

• DHCPRELEASE

• DHCPINFORM

• DHCPFORCERENEW

• DHCPLEASEQUERY

• DHCPLEASEUNASSIGNED

• DHCPLEASEUNKNOWN

• DHCPLEASEACTIVE

• DHCPBULKLEASEQUERY

• DHCPLEASEQUERYDONE

offeredAddr: IPAddress
The IP address the DHCP server is offering or assigning to the client.

Access only on DHCP_RESPONSE events; otherwise, an error will occur.
options: Array of Objects

An array of objects with each object containing the following fields:
code: Number

The DHCP option code.
name: String

The DHCP option name.
payload: Number | String

The type of payload returned will be whatever the type is for that specific option such as an
IP address, an array of IP addresses, or a buffer object. IP addresses will be parsed into an
array but if the number of bytes is not divisible by 4, it will instead be returned as a buffer.

paramReqList: String
A comma-separated list of numbers that represents the DHCP options requested from the server by
the client. For a complete list of DHCP options, see https://www.iana.org/assignments/bootp-dhcp-
parameters/bootp-dhcp-parameters.xhtml.

https://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-parameters.xhtml
https://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-parameters.xhtml

ExtraHop 25.2 Trigger API Reference 97

processingTime: Number
The process time, expressed in milliseconds. The value is NaN on malformed and aborted responses
or if the timing is invalid.

Access only on DHCP_RESPONSE events; otherwise, an error will occur.
record: Object

The record object that can be sent to the configured recordstore through a call to
DHCP.commitRecord on either a DHCP_REQUEST or DHCP_RESPONSE event.

The event on which the method was called determines which properties the default record object
can contain as displayed in the following table:

DHCP_REQUEST DHCP_RESPONSE

clientIsExternal clientIsExternal

clientReqDelay error

gwAddr gwAddr

htype htype

msgType msgType

receiverIsExternal offeredAddr

reqBytes processingTime

reqL2Bytes rspBytes

reqPkts rspL2Bytes

senderIsExternal rspPkts

serverIsExternal receiverIsExternal

txId senderIsExternal

serverIsExternal

txId

reqBytes: Number
The number of L4 request bytes, excluding L4 headers.

Access only on DHCP_RESPONSE events; otherwise, an error will occur.
reqL2Bytes: Number

The number of L2 request bytes, including L2 headers.

Access only on DHCP_RESPONSE events; otherwise, an error will occur.
reqPkts: Number

The number of request packets.

Access only on DHCP_RESPONSE events; otherwise, an error will occur.
rspBytes: Number

The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

Access only on DHCP_RESPONSE events; otherwise, an error will occur.
rspL2Bytes: Number

The number of L2 response bytes, including protocol overhead, such as headers.

ExtraHop 25.2 Trigger API Reference 98

Access only on DHCP_RESPONSE events; otherwise, an error will occur.
rspPkts: Number

The number of response packets.

Access only on DHCP_RESPONSE events; otherwise, an error will occur.
txId: Number

The transaction ID.
vendor: String

The Vendor Class Identifier (VCI) that specifies the vendor running on the client or server.

DICOM

The DICOM (Digital Imaging and Communications in Medicine) class enables you to store metrics and
access properties on DICOM_REQUEST and DICOM_RESPONSE events.

Events
DICOM_REQUEST

Runs on every DICOM request processed by the device.
DICOM_RESPONSE

Runs on every DICOM response processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on a DICOM_REQUEST or DICOM_RESPONSE event.

The event determines which properties are committed to the record object. To view the default
properties committed on each event, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

findElement(groupTag: Number, elementTag: Number): Buffer
Returns a buffer that contains the DICOM data element specified by the passed group and element
tag numbers.

The data element is represented by a unique ordered pair of integers that represent the group tag
and element tag numbers. For example, the ordered pair "0008, 0008" represents the "image type"
element. A Registry of DICOM Data Elements and defined tags is available at dicom.nema.org .

groupTag: Number
The first number in the unique ordered pair of integers that represent a specific data element.

elementTag: Number
The second number in the unique ordered pair or integers that represent a specific data
element.

Properties
calledAETitle: String

The application entity (AE) title of the destination device or program.
callingAETitle: String

The application entity (AE) title of the source device or program.

http://dicom.nema.org/dicom/2013/output/chtml/part06/chapter_6.html
http://dicom.nema.org/dicom/2013/output/chtml/part06/chapter_6.html

ExtraHop 25.2 Trigger API Reference 99

elements: Array
An array of presentation data values (PDV) command elements and data elements that comprise a
DICOM message.

error: String
The detailed error message recorded by the ExtraHop system.

isReqAborted: Boolean
The value is true if the connection is closed before the DICOM request is complete.

Access only on DICOM_REQUEST events; otherwise, an error will occur.
isRspAborted: Boolean

The value is true if the connection is closed before the DICOM response is complete.

Access only on DICOM_RESPONSE events; otherwise, an error will occur.
isSubOperation: Boolean

The value is true if the timing metric on an L7 protocol message is not available because the
primary request or response is not complete.

methods: Array of Strings
An array of command fields in the message. Each command field specifies a DIMSE operation name,
such as N-CREATE-RSP.

processingTime: Number
The server processing time, expressed in milliseconds. The value is NaN on malformed and aborted
responses or if the timing is invalid.

Access only on DICOM_RESPONSE events; otherwise, an error will occur.
record: Object

The record object that can be sent to the configured recordstore through a call to
DICOM.commitRecord on either a DICOM_REQUEST or DICOM_RESPONSE event.

The event on which the method was called determines which properties the default record object
can contain as displayed in the following table:

DICOM_REQUEST DICOM_RESPONSE

calledAETitle calledAETitle

callingAETitle callingAETitle

clientIsExternal clientIsExternal

clientZeroWnd clientZeroWnd

error error

isReqAborted isRspAborted

isSubOperation isSubOperation

method method

receiverIsExternal processingTime

reqPDU receiverIsExternal

reqSize rspPDU

reqTransferTime rspSize

senderIsExternal rspTransferTime

serverIsExternal senderIsExternal

ExtraHop 25.2 Trigger API Reference 100

DICOM_REQUEST DICOM_RESPONSE

serverZeroWnd serverIsExternal

version serverZeroWnd

version

reqBytes: Number
The number of L4 request bytes, excluding L4 headers.

Access only on DICOM_REQUEST events; otherwise, an error will occur.
reqL2Bytes: Number

The number of L2 request bytes, including L2 headers.
reqPDU: String

The Protocol Data Unit (PDU), or message format, of the request.
reqPkts: Number

The number of request packets.
reqRTO: Number

The number of request retransmission timeouts (RTOs).
reqSize: Number

The number of L7 request bytes.

Access only on DICOM_REQUEST events; otherwise, an error will occur.
reqTransferTime: Number

The request transfer time, expressed in milliseconds.

Access only on DICOM_REQUEST events; otherwise, an error will occur.
reqZeroWnd: Number

The number of zero windows in the request.
roundTripTime: Number

The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last DICOM_RESPONSE
event ran. The value is NaN if there are no RTT samples.

Access only on DICOM_RESPONSE events; otherwise, an error will occur.
rspBytes: Number

The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

Access only on DICOM_RESPONSE events; otherwise, an error will occur.
rspL2Bytes: Number

The number of L2 response bytes, including protocol overhead, such as headers.
rspPDU: String

The Protocol Data Unit (PDU), or message format, of the response.

Access only on DICOM_RESPONSE events; otherwise, an error will occur.
rspPkts: Number

The number of response packets.
rspRTO: Number

The number of response retransmission timeouts (RTOs).

ExtraHop 25.2 Trigger API Reference 101

rspSize: Number
The number of L7 response bytes.

Access only on DICOM_RESPONSE events; otherwise, an error will occur.
rspTransferTime: Number

The response transfer time, expressed in milliseconds.

Access only on DICOM_RESPONSE events; otherwise, an error will occur.
rspZeroWnd: Number

The number of zero windows in the response.
version: Number

The DICOM version number.

DNP3
The Distributed Network Protocol (DNP3) class enables you to store metrics and access properties on
DNP3_REQUEST and DNP3_RESPONSE events.

Events
DNP3_REQUEST

Runs on every DNP3 request processed by the device.
DNP3_RESPONSE

Runs on every DNP3 response processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on a DNP3_RESPONSE event. Record commits on
DNP3_REQUEST events are not supported.To view the default properties committed to the record
object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
control: Number

The numeric code that specifies control flags for the request or response.
dstAddr: Number

The address of the station that the request or response is being sent to.
record: Object

The record object that can be sent to the configured recordstore through a call to
DNP3.commitRecord on a DNP3_RESPONSE event.

The default record object can contain the following properties:

• application

• client

• clientAddr

• clientIsExternal

• clientPort

• control

• dstAddr

ExtraHop 25.2 Trigger API Reference 102

• flowId

• receiverIsExternal

• senderIsExternal

• server

• serverAddr

• serverIsExternal

• serverPort

• srcAddr

• vlan

Access only on DNP3_RESPONSE events; otherwise, an error will occur.
reqPayload: Buffer

A Buffer object that contains the raw payload bytes of the request.
rspPayload: Buffer

A Buffer object that contains the raw payload bytes of the response.

Access only on DNP3_RESPONSE events; otherwise, an error will occur.
srcAddr: Number

The address of the station that the request or response is being sent from.

DNS

The DNS class enables you to store metrics and access properties on DNS_REQUEST and DNS_RESPONSE
events.

Events
DNS_REQUEST

Runs on every DNS request processed by the device.
DNS_RESPONSE

Runs on every DNS response processed by the device.

Methods
answersInclude(term: String | IPAddress): Boolean

Returns true if the specified term is present in a DNS response. For string terms, the method checks
both the name and data record in the answer section of the response. For IPAddress terms, the
method checks only the data record in the answer section.

Can be called only on DNS_RESPONSE events.
commitRecord(): void

Sends a record to the configured recordstore on a DNS_REQUEST or DNS_RESPONSE event.

The event determines which properties are committed to the record object. To view the default
properties committed on each event, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
answers: Array

An array of objects that correspond to answer resource records.

Access only on DNS_RESPONSE events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 103

The objects contain the following properties:

data: String | IPAddress
The value of data depends on the type. The value is null for unsupported record types.
Supported record types include:

• A

• AAAA

• NS

• PTR

• CNAME

• MX

• SRV

• SOA

• TXT

name: String
The record name.

ttl: Number
The time-to-live value.

type: String
The DNS record type.

typeNum: Number
The numeric representation of the DNS record type.

error: String
The name of the DNS error code, in accordance with IANA DNS parameters.

Returns OTHER for error codes that are unrecognized by the system; however, errorNum specifies
the numeric code value.

Access only on DNS_RESPONSE events; otherwise, an error will occur.
errorNum: Number

The numeric representation of the DNS error code in accordance with IANA DNS parameters.

Access only on DNS_RESPONSE events; otherwise, an error will occur.
isAuthenticData: Boolean

The value is true if the response was validated through DNSSEC.

Access only on DNS_RESPONSE events; otherwise, an error will occur.
isAuthoritative: Boolean

The value is true if the authoritative answer is set in the response.

Access only on DNS_RESPONSE events; otherwise, an error will occur.
isCheckingDisabled: Boolean

The value is true if a response should be returned even though the request could not be
authenticated.

Access only on DNS_REQUEST events; otherwise, an error will occur.
isDGADomain: Boolean

The value is true if the domain of the server might have been generated by a domain generation
algorithm (DGA). Some forms of malware produce large numbers of domain names with DGAs to
hide command and control servers. The value is null if the domain was not suspicious.

isRecursionAvailable: Boolean
The value is true if the name server supports recursive queries.

ExtraHop 25.2 Trigger API Reference 104

Access only on DNS_RESPONSE events; otherwise, an error will occur.
isRecursionDesired: Boolean

The value is true if the name server should perform the query recursively.

Access only on DNS_REQUEST events; otherwise, an error will occur.
isReqTimeout: Boolean

The value is true if the request timed out.

Access only on DNS_REQUEST events; otherwise, an error will occur.
isRspTruncated: Boolean

The value is true if the response is truncated.

Access only on DNS_RESPONSE events; otherwise, an error will occur.
opcode: String

The name of the DNS operation code in accordance with IANA DNS parameters. The following
codes are recognized by the ExtraHop system:

OpCode Name

0 Query

1 IQuery (Inverse Query - Obsolete)

2 Status

3 Unassigned

4 Notify

5 Update

6-15 Unassigned

Returns OTHER for codes that are unrecognized by the system; however, the opcodeNum property
specifies the numeric code value.

opcodeNum: Number
The numeric representation of the DNS operation code in accordance with IANA DNS parameters.

payload: Buffer
The Buffer object that contains the raw payload bytes of the event transaction.

processingTime: Number
The server processing time, expressed in bytes. The value is NaN on malformed and aborted
responses or if the timing is invalid.

Access only on DNS_RESPONSE events; otherwise, an error will occur.
qname: String | null

The hostname queried.

This value is null if the opcode property is UPDATE.
qtype: String | null

The name of the DNS request record type in accordance with IANA DNS parameters.

Returns OTHER for types that are unrecognized by the system; however, the qtypeNum property
specifies the numeric type value.

This value is null if the opcode property is UPDATE.
qtypeNum: Number | null

The numeric representation of the DNS request record type in accordance with IANA DNS
parameters.

ExtraHop 25.2 Trigger API Reference 105

This value is null if the opcode property is UPDATE.
record: Object

The record object that can be sent to the configured recordstore through a call to
DNS.commitRecord() on either a DNS_REQUEST or DNS_RESPONSE event.

The event on which the method was called determines which properties the default record object
can contain as displayed in the following table:

DNS_REQUEST DNS_RESPONSE

clientIsExternal answers

clientZeroWnd clientIsExternal

isCheckingDisabled clientZeroWnd

isDGADomain error

isRecursionDesired isAuthoritative

isReqTimeout isCheckingDisabled

opcode isDGADomain

qname isRecursionAvailable

qtype isRspTruncated

receiverIsExternal opcode

reqBytes processingTime

reqL2Bytes receiverIsExternal

reqPkts qname

senderIsExternal qtype

serverIsExternal rspBytes

serverZeroWnd rspL2Bytes

rspPkts

senderIsExternal

serverIsExternal

serverZeroWnd

reqBytes: Number
The number of L4 request bytes, excluding L4 headers.

Access only on DNS_REQUEST events; otherwise, an error will occur.
reqL2Bytes: Number

The number of L2 request bytes, including L2 headers.

Access only on DNS_REQUEST events; otherwise, an error will occur.
reqPkts: Number

The number of request packets.

Access only on DNS_REQUEST events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 106

rspBytes: Number
The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

Access only on DNS_RESPONSE events; otherwise, an error will occur.
reqZeroWnd: Number

The number of zero windows in the request.
rspL2Bytes: Number

The number of L2 response bytes, including protocol overhead, such as headers.

Access only on DNS_RESPONSE events; otherwise, an error will occur.
rspPkts: Number

The number of application-level response bytes.

Access only on DNS_RESPONSE events; otherwise, an error will occur.
rspZeroWnd: Number

The number of zero windows in the response.
txId: Number

The transaction ID of the DNS request or response.
zname: String | null

The DNS zone being updated.

This value is null if the opcode property is not UPDATE.
ztype: String | null

The type of DNS zone being updated. Returns OTHER for types that are unrecognized by the system.

This value is null if the opcode property is not UPDATE.
ztypeNum: Number | null

The numeric representation of the DNS zone type.

This value is null if the opcode property is not UPDATE.

FIX

The FIX class enables you to store metrics and access properties on FIX_REQUEST and FIX_RESPONSE
events.

Events
FIX_REQUEST

Runs on every FIX request processed by the device.
FIX_RESPONSE

Runs on every FIX response processed by the device.

Note: The FIX_RESPONSE event is matched with a request based on order ID. There is no one-
to-one correlation between request and response. There might be requests without a
response, and sometimes data is pushed to the client, which limits request data availability
on response event. However, you can invoke the session table to solve complex scenarios
such as submission order id.

Methods
commitRecord(): void

Sends a record to the configured recordstore on either a FIX_REQUEST or FIX_RESPONSE event.

ExtraHop 25.2 Trigger API Reference 107

The event determines which properties are committed to the record object. To view the default
properties committed for each event see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
fields: Array

A list of FIX fields. Because they are text-based, the key-value protocol fields are exposed as an array
of objects with name and value properties containing strings. For example:

8=FIX.4.2<SOH>9=233<SOH>35=G<SOH>34=206657...

translates to:

{"BeginString": "FIX.4.2", "BodyLength": "233", "MsgType": "G",
 "MsgSeqNum":
"206657"}

Key string representation is translated, if possible. With extensions, a numeric representation is used.
For example, it is not possible to determine 9178=0 (as seen in actual captures). The key is instead
translated to "9178". Fields are extracted after message length and version fields are extracted all
the way to the checksum (last field). The checksum is not extracted.

In the following example, the trigger debug(JSON.stringify(FIX.fields)); shows the
following fields:

[
 {"name":"MsgType","value":"0"},
 {"name":"MsgSeqNum","value":"2"},
 {"name":"SenderCompID","value":"AA"},
 {"name":"SendingTime","value":"20140904-03:49:58.600"},
 {"name":"TargetCompID","value":"GG"}
]

To debug and print all FIX fields, enable debugging on the trigger and enter the following code:

var fields = '';
for (var i = 0; i < FIX.fields.length; i++) {
fields += '"' + FIX.fields[i].name + '" : "' + FIX.fields[i].value +
'"\n';
} debug(fields);

The following output is display in the trigger's Debug Log:

"MsgType" : "5"
"MsgSeqNum" : "3"
"SenderCompID" : "GRAPE"
"SendingTime" : "20140905-00:10:23.814"
"TargetCompID" : "APPLE"

msgType: String
The value of the MessageCompID key.

processingTime: Number
The server processing time, expressed in milliseconds. The value is NaN if the timing is invalid.

Access only on FIX_RESPONSE events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 108

record: Object
The record object that can be sent to the configured recordstore through a call to
FIX.commitRecord on either a FIX_REQUEST or FIX_RESPONSE event.

The event on which the method was called determines which properties the default record object
can contain as displayed in the following table:

FIX_REQUEST FIX_RESPONSE

clientIsExternal clientIsExternal

clientZeroWnd clientZeroWnd

msgType msgType

receiverIsExternal receiverIsExternal

reqBytes rspBytes

reqL2Bytes rspL2Bytes

reqPkts rspPkts

reqRTO rspRTO

sender sender

senderIsExternal senderIsExternal

serverIsExternal serverIsExternal

serverZeroWnd serverZeroWnd

target target

version version

reqBytes: Number
The number of L4 request bytes, excluding L4 headers.

reqL2Bytes: Number
The number of L2 request bytes, including L2 headers.

reqPkts: Number
The number of request packets.

reqRTO: Number
The number of request retransmission timeouts (RTOs).

reqZeroWnd: Number
The number of zero windows in the request.

rspBytes: Number
The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

rspL2Bytes: Number
The number of L2 response bytes, including protocol overhead, such as headers.

rspPkts: Number
The number of response packets.

rspRTO: Number
The number of response retransmission timeouts (RTOs).

ExtraHop 25.2 Trigger API Reference 109

rspZeroWnd: Number
The number of zero windows in the response.

sender: String
The value of the SenderCompID key.

target: String
The value of the TargetCompID key.

version: String
The protocol version.

FTP

The FTP class enables you to store metrics and access properties on FTP_REQUEST and FTP_RESPONSE
events.

Events
FTP_REQUEST

Runs on every FTP request processed by the device.
FTP_RESPONSE

Runs on every FTP response processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on an FTP_RESPONSE event. Record commits on
FTP_REQUEST events are not supported.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
args: String

The arguments to the command.

Access only on FTP_RESPONSE events; otherwise, an error will occur.
cwd: String

In the case of a user at /, when the client sends "CWD subdir":

• The value is / when method == "CWD".
• The value is /subdir for subsequent commands (rather than CWD becoming the changed to

directory as part of the CWD response trigger).

Includes "..." at the beginning of the path in the event of a resync or the path is truncated.

Includes "..." at the end of the path if the path is too long. Path truncates at 4096 characters.

Access only on FTP_RESPONSE events; otherwise, an error will occur.
error: string

The detailed error message recorded by the ExtraHop system.

Access only on FTP_RESPONSE events; otherwise, an error will occur.
filename: String

The name of the file being transferred.

ExtraHop 25.2 Trigger API Reference 110

isReqAborted: Boolean
The value is true the connection is closed before the FTP request was complete.

isRspAborted: Boolean
The value is true if the connection is closed before the FTP response was complete.

Access only on FTP_RESPONSE events; otherwise, an error will occur.
method: String

The FTP method.
path: String

The path for FTP commands. Includes "..." at the beginning of the path in the event of a resync or the
path is truncated. Includes "..." at the end of the path if the path is too long. Path truncates at 4096
characters.

Access only on FTP_RESPONSE events; otherwise, an error will occur.
payloadMediaType: String | Null

The type of media contained in the payload. The value is null if there is no payload or the media type
is unknown.

processingTime: Number
The server processing time, expressed in milliseconds (equivalent to rspTimeToFirstPayload
- reqTimeToLastByte). The value is NaN on malformed and aborted responses or if the timing is
invalid.

Access only on FTP_RESPONSE events; otherwise, an error will occur.
record: Object

The record object that can be sent to the configured recordstore through a call to
FTP.commitRecord() on an FTP_RESPONSE event.

The default record object can contain the following properties:

• args

• clientIsExternal

• clientZeroWnd

• cwd

• error

• isReqAborted

• isRspAborted

• method

• path

• processingTime

• receiverIsExternal

• reqBytes

• reqL2Bytes

• reqPayloadMediaType

• reqPayloadSHA256

• reqPkts

• reqRTO

• roundTripTime

• rspBytes

• rspL2Bytes

• rspPayloadMediaType

• rspPayloadSHA256

• rspPkts

ExtraHop 25.2 Trigger API Reference 111

• rspRTO

• senderIsExternal

• serverIsExternal

• serverZeroWnd

• statusCode

• transferBytes

• user

Access the record object only on FTP_RESPONSE events; otherwise, an error will occur.
reqBytes: Number

The number of L4 request bytes, excluding L4 headers.

Access only on FTP_RESPONSE events; otherwise, an error will occur.
reqL2Bytes: Number

The number of L2 request bytes, including L2 headers.

Access only on FTP_RESPONSE events; otherwise, an error will occur.
reqPkts: Number

The number of request packets.

Access only on FTP_RESPONSE events; otherwise, an error will occur.
reqRTO: Number

The number of request retransmission timeouts (RTOs).

Access only on FTP_RESPONSE events; otherwise, an error will occur.
reqZeroWnd: Number

The number of zero windows in the request.
roundTripTime: Number

The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last FTP_RESPONSE event
ran. The value is NaN if there are no RTT samples.

Access only on FTP_RESPONSE events; otherwise, an error will occur.
rspBytes: Number

The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

Access only on FTP_RESPONSE events; otherwise, an error will occur.
rspL2Bytes: Number

The number of L2 response bytes, including protocol overhead, such as headers.

Access only on FTP_RESPONSE events; otherwise, an error will occur.
rspPkts: Number

The number of response packets.

Access only on FTP_RESPONSE events; otherwise, an error will occur.
rspRTO: Number

The number of response retransmission timeouts (RTOs).

Access only on FTP_RESPONSE events; otherwise, an error will occur.
rspZeroWnd: Number

The number of zero windows in the response.

ExtraHop 25.2 Trigger API Reference 112

statusCode: Number
The FTP status code of the response.

Access only on FTP_RESPONSE events; otherwise, an error will occur.

The following codes are valid:

Code Description

110 Restart marker replay.

120 Service ready in nnn minutes.

125 Data connection already open; transfer starting.

150 File status okay; about to open data connection.

202 Command not implemented, superfluous at this site.

211 System status, or system help reply.

212 Directory status.

213 File status.

214 Help message.

215 NAME system type.

220 Service ready for new user.

221 Service closing control connection.

225 Data connection open; no transfer in progress.

226 Closing data connection. Requested file action successful.

227 Entering Passive Mode.

228 Entering Long Passive Mode.

229 Entering Extended Passive Mode.

230 User logged in, proceed. Logged out if appropriate.

231 User logged out; service terminated.

232 Logout command noted, will complete when transfer done

250 Requested file action okay, completed.

257 "PATHNAME" created.

331 User name okay, need password.

332 Need account for login.

350 Requested file action pending further information.

421 Service not available, closing control connection.

425 Can't open data connection.

426 Connection closed; transfer aborted.

430 Invalid username or password.

434 Requested host unavailable.

ExtraHop 25.2 Trigger API Reference 113

Code Description

450 Requested file action not taken.

451 Requested action aborted. Local error in processing.

452 Requested action not taken.

501 Syntax error in parameters or arguments.

502 Command not implemented.

503 Bad sequence of commands.

504 Command not implemented for that parameter.

530 Not logged in.

532 Need account for storing files.

550 Requested action not taken. File unavailable.

551 Requested action aborted. Page type unknown.

552 Requested file action aborted. Exceeded storage allocation.

553 Requested action not taken. File name not allowed.

631 Integrity protected reply.

632 Confidentiality and integrity protected reply.

633 Confidentiality protected reply.

10054 Connection reset by peer.

10060 Cannot connect to remote server.

10061 Cannot connect to remote server. The connection is active refused.

10066 Directory not empty.

10068 Too many users, server is full.

transferBytes: Number
The number of bytes transferred over the data channel during an FTP_RESPONSE event.

Access only on FTP_RESPONSE events; otherwise, an error will occur.
user: String

The user name, if available. In some cases, such as when login events are encrypted, the user name is
not available.

HL7

The HL7 class enables you to store metrics and access properties on HL7_REQUEST and HL7_RESPONSE
events.

Events
HL7_REQUEST

Runs on every HL7 request processed by the device.
HL7_RESPONSE

Runs on every HL7 response processed by the device.

ExtraHop 25.2 Trigger API Reference 114

Methods
commitRecord(): void

Sends a record to the configured recordstore on an HL7_RESPONSE event. Record commits on
HL7_REQUEST events are not supported.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
ackCode: String

The two character acknowledgment code.

Access only on HL7_RESPONSE events; otherwise, an error will occur.
ackId: String

The identifier for the message being acknowledged.

Access only on HL7_RESPONSE events; otherwise, an error will occur.
msgId: String

The unique identifier for this message.
msgType: String

The entire message type field, including the msgId subfield.
processingTime: Number

The server processing time, expressed in milliseconds. The value is NaN on malformed and aborted
responses or if the timing is invalid.

Access only on HL7_RESPONSE events; otherwise, an error will occur.
record: Object

The record object that can be sent to the configured recordstore through a call to
HL7.commitRecord() on an HL7_RESPONSE event.

The default record object can contain the following properties:

• ackCode

• ackId

• clientIsExternal

• clientZeroWnd

• msgId

• msgType

• receiverIsExternal

• roundTripTime

• processingTime

• senderIsExternal

• serverIsExternal

• serverZeroWnd

• version

Access the record object only on HL7_RESPONSE events; otherwise, an error will occur.
reqZeroWnd: Number

The number of zero windows in the request.
roundTripTime: Number

The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.

ExtraHop 25.2 Trigger API Reference 115

The median value is calculated by sampling the RTTs observed since the last HL7_RESPONSE event
ran. The value is NaN if there are no RTT samples.

Access only on HL7_RESPONSE events; otherwise, an error will occur.
rspZeroWnd: Number

The number of zero windows in the response.
segments: Array

An array of segment objects with the following fields:
name: String

The name of the segment.
fields: Array of Strings

The segment field values. Because the indices of the array start at 0, and HL7 field numbers
start at 1, the index is the HL7 field number minus 1. For example, to select field 16 of a PRT
segment (the participation device ID), specify 15, as shown in the following example code:

HL7.segments[5].fields[15]

Note: If a segment is blank, the array contains an empty string at the segment
index.

subfieldDelimiter: String
Supports non-standard field delimiters.

version: String
The version advertised in the MSH segment.

Note: The amount of buffered data is limited by the following capture option:
("message_length_max": number)

HTTP

The HTTP class enables you to store metrics and access properties on HTTP_REQUEST and
HTTP_RESPONSE events.

Events
HTTP_REQUEST

Runs on every HTTP request processed by the device.
HTTP_RESPONSE

Runs on every HTTP response processed by the device.

Additional payload options are available when you create a trigger that runs on either of these events. See
Advanced trigger options for more information.

Methods
commitRecord(): void

Sends a record to the configured recordstore on an HTTP_REQUEST or HTTP_RESPONSE event. To
view the default properties committed to the record object, see the record property below.

If the commitRecord() method is called on an HTTP_REQUEST event, the record is not created
until the HTTP_RESPONSE event runs. If the commitRecord() method is called on both the
HTTP_REQUEST and the corresponding HTTP_RESPONSE, only one record is created for request and
response, even if the commitRecord() method is called multiple times on the same trigger events.

ExtraHop 25.2 Trigger API Reference 116

findHeaders(name: String): Array
Enables access to HTTP header values and returns an array of header objects (with name and value
properties) where the names match the prefix of the string value. See Example: Access HTTP header
attributes for more information.

parseQuery(String): Object
Accepts a query string and returns an object with names and values corresponding to those in the
query string as shown in the following example:

var query = HTTP.parseQuery(HTTP.query);
debug("user id: " + query.userid);

Note: If the query string contains repeated keys, the corresponding
values are returned in an array. For example, the query string
event_type=status_update_event&event_type=api_post_event
returns the following object:

{
 "event_type": ["status_update_event", "api_post_event"]
}

Properties
age: Number

For HTTP_REQUEST events, the time from the first byte of the request until the last seen byte of the
request. For HTTP_RESPONSE events, the time from the first byte of the request until the last seen
byte of the response. The time is expressed in milliseconds. Specifies a valid value on malformed and
aborted requests. The value is NaN on expired requests and responses, or if the timing is invalid.

contentType: String
The value of the content-type HTTP header.

cookies: Array
An array of objects that represents cookies and contains properties such as "domain" and "expires."
The properties correspond to the attributes of each cookie as shown in the following example:

var cookies = HTTP.cookies,
 cookie,
 i;
for (i = 0; i < cookies.length; i++) {
 cookie = cookies[i];
 if (cookie.domain) {
 debug("domain: " + cookie.domain);
 }
}

encryptionProtocol: String
The protocol that the transaction is encrypted with.

filename: String | Null
The name of the file being transferred. If the HTTP request or response did not transfer a file, the
value is null.

headers: Object
An array-like object that enables access to HTTP header names and values. Header information is
available through one of the following properties:
length: Number

The number of headers.

ExtraHop 25.2 Trigger API Reference 117

string property:

The name of the header, accessible in a dictionary-like fashion, as shown in the following
example:

var headers = HTTP.headers;
 session = headers["X-Session-Id"];
 accept = headers.accept;

numeric property:

Corresponds to the order in which the headers appear on the wire. The returned object has
a name and a value property. Numeric properties are useful for iterating over all the headers
and disambiguating headers with duplicate names as shown in the following example:

var headers = HTTP.headers;
for (i = 0; i < headers.length; i++) {
 hdr = headers[i];
 debug("headers[" + i + "].name: " + hdr.name);
 debug("headers[" + i + "].value: " + hdr.value);
}

Note: Saving HTTP.headers to the Flow store does not save all of the individual
header values. It is a best practice to save the individual header values to the
Flow store. Refer to the Flow class section for details.

headersRaw: String
The unmodified block of HTTP headers, expressed as a string.

host: String
The value in the HTTP host header.

isClientReset: Boolean
The value is true if the HTTP/2 stream is reset by the client. If the protocol is HTTP1.1, the value is
false.

isContinued: Boolean
The value is true if the client sent an initial HTTP/1.1 request with an Expect: 100-continue
header and received a 100 status code from the server as part of the transaction. If the protocol is
HTTP/2, the value is false

isDesync: Boolean
The value is true if the protocol parser became desynchronized due to missing packets.

isEncrypted: Boolean
The value is true if the transaction is over secure HTTP.

isDecrypted: Boolean
The value is true if the ExtraHop system securely decrypted and analyzed the transaction.
Decrypted traffic analysis can expose advanced threats that hide within encrypted traffic.

isPipelined: Boolean
The value is true if the transaction is pipelined.

isReqAborted: Boolean
The value is true if the connection is closed before the HTTP request was complete.

isRspAborted: Boolean
The value is true if the connection is closed before the HTTP response was complete.

Access only on HTTP_RESPONSE events; otherwise, an error will occur.
isRspChunked: Boolean

The value is true if the response is chunked.

ExtraHop 25.2 Trigger API Reference 118

Access only on HTTP_RESPONSE events; otherwise, an error will occur.
isRspCompressed: Boolean

The value is true if the response is compressed.

Access only on HTTP_RESPONSE events; otherwise, an error will occur.
isServerPush: Boolean

The value is true if the transaction is the result of a server push.
isServerReset: Boolean

The value is true if the HTTP/2 stream is reset by the server.
isSQLi: Boolean

The value is true if the request included one or more suspicious SQL fragments. These fragments
indicate a potential SQL injection (SQLi). SQLi is a technique where an attacker can access and
tamper with data by inserting malicious SQL statements into a SQL query.

isXSS: Boolean
The value is true if the HTTP request included potential cross-site scripting (XSS) attempts. A
successful XSS attempt can inject a malicious client-side script or payload into a trusted website or
application. When a victim visits the website, the malicious script is then injected into the victim's
browser.

method: String
The HTTP method of the transaction such as POST and GET.

oauthBearerToken: String
The OAuth token sent by the client to the server for authorization.

origin: IPAddress | String
The value in the X-Forwarded-For or the true-client-ip header.

path: String
The path portion of the URI: /path/.

payload: Buffer | Null
The Buffer object that contains the raw payload bytes of the event transaction. If the payload was
compressed, the decompressed content is returned.

The buffer contains the N first bytes of the payload, where N is the number of payload bytes
specified by the Bytes to Buffer field when the trigger was configured through the ExtraHop WebUI.
The default number of bytes is 2048. For more information, see Advanced trigger options.

The following script is an example of HTTP payload analysis:

// Extract the user name based on a pattern "user=*&" from payload
// of a login URI that has "auth/login" as a URI substring.

if (HTTP.payload && /auth\/login/i.test(HTTP.uri)) {
 var user = /user=(.*?)\&/i.exec(HTTP.payload);
 if (user !== null) {
 debug("user: " + user[1]);
 }
}

Note: If two HTTP payload buffering triggers are assigned to the same device, the higher
value is selected and the value of HTTP.payload is the same for both triggers.

payloadParts: Array of Objects | Null
An array of objects that contain the individual payloads of a multipart HTTP request or response. The
value is null if the content type is not multipart. Each object contains the following fields:

ExtraHop 25.2 Trigger API Reference 119

headers: Object
A header object that specifies HTTP headers. For more information, see the description of the
HTTP.headers property.

payloadSHA256: String
The hexadecimal representation of the SHA-256 hash of the payload. The string contains no
delimiters.

payloadMediaType: String | Null
The media type of the payload. The value is null if the media type is unknown.

payload: Buffer
The Buffer object containing the raw payload bytes.

size: Number
The size of the payload, expressed in bytes.

filename: String
The filename specified in the Content-Disposition header.

processingTime: Number
The server processing time, expressed in milliseconds (equivalent to rspTimeToFirstPayload
- reqTimeToLastByte). The value is NaN on malformed and aborted responses or if the timing is
invalid.

Access only on HTTP_RESPONSE events; otherwise, an error will occur.
query: String

The query string portion of the URI: query=string. This typically follows the URL and is
separated from it by a question mark. Multiple query strings are separated by an ampersand (&) or
semicolon (;) delimiter.

record: Object
The record object that can be sent to the configured recordstore through a call to
HTTP.commitRecord().

The default record object can contain the following properties:

• clientIsExternal

• clientZeroWnd

• contentType

• host

• isPipelined

• isReqAborted

• isRspAborted

• isRspChunked

• isRspCompressed

• method

• oauthAlgorithm

• oauthAudience

• oauthClientId

• oauthIssuer

• oauthJWTId

• origin

• query

• receiverIsExternal

• referer

• reqBytes

• reqL2Bytes

ExtraHop 25.2 Trigger API Reference 120

• reqPayloadMediaType

• reqPayloadSHA256

• reqPkts

• reqRTO

• reqSize

• reqTimeToLastByte

• roundTripTime

• rspBytes

• rspL2Bytes

• rspPayloadMediaType

• rspPayloadSHA256

• rspPkts

• rspRTO

• rspSize

• rspTimeToFirstHeader

• rspTimeToFirstPayload

• rspTimeToLastByte

• rspVersion

• samlRspAudience

• samlRspCertificateSubject

• samlRspDigestMethodAlgorithm

• samlRspIssuer

• samlRspNameID

• samlRspSignatureMethodAlgorithm

• samlRspStatusCode

• senderIsExternal

• serverIsExternal

• serverZeroWnd

• statusCode

• thinkTime

• title

• processingTime

• uri

• userAgent

Access the record object only on HTTP_RESPONSE events; otherwise, an error will occur.
referer: String

The value in the HTTP referrer header.
reqBytes: Number

The number of L4 request bytes, excluding L4 headers.

Access only on HTTP_RESPONSE events; otherwise, an error will occur.
reqL2Bytes: Number

The number of L2 request bytes, including L2 headers.

Access only on HTTP_RESPONSE events; otherwise, an error will occur.
reqPkts: Number

The number of request packets.

Access only on HTTP_RESPONSE events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 121

reqRTO: Number
The number of request retransmission timeouts (RTOs).

Access only on HTTP_RESPONSE events; otherwise, an error will occur.
reqSize: Number

The number of L7 request bytes, excluding HTTP headers.
reqTimeToLastByte: Number

The time from the first byte of the request until the last byte of the request, expressed in
milliseconds. The value is NaN on expired requests and responses, or if the timing is invalid.

reqZeroWnd: Number
The number of zero windows in the request.

roundTripTime: Number
The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last HTTP_RESPONSE event
ran. The value is NaN if there are no RTT samples.

Access only on HTTP_RESPONSE events; otherwise, an error will occur.
rspBytes: Number

The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

Access only on HTTP_RESPONSE events; otherwise, an error will occur.
rspL2Bytes: Number

The number of L2 response bytes, including protocol overhead, such as headers.

Access only on HTTP_RESPONSE events; otherwise, an error will occur.
rspPkts: Number

The number of response packets.

Access only on HTTP_RESPONSE events; otherwise, an error will occur.
rspRTO: Number

The number of response retransmission timeouts (RTOs).

Access only on HTTP_RESPONSE events; otherwise, an error will occur.
rspSize: Number

The number of L7 response bytes, excluding HTTP headers.

Access only on HTTP_RESPONSE events; otherwise, an error will occur.
rspTimeToFirstHeader: Number

The time from the first byte of the request until the status line that precedes the response headers,
expressed in milliseconds. The value is NaN on malformed and aborted responses, or if the timing is
invalid.

Access only on HTTP_RESPONSE events; otherwise, an error will occur.
rspTimeToFirstPayload: Number

The time from the first byte of the request until the first payload byte of the response, expressed in
milliseconds. Returns zero value when the response does not contain payload. The value is NaN on
malformed and aborted responses, or if the timing is invalid.

Access only on HTTP_RESPONSE events; otherwise, an error will occur.
rspTimeToLastByte: Number

The time from the first byte of the request until the last byte of the response, expressed in
milliseconds. The value is NaN on malformed and aborted responses, or if the timing is invalid.

ExtraHop 25.2 Trigger API Reference 122

Access only on HTTP_RESPONSE events; otherwise, an error will occur.
rspVersion: String

The HTTP version of the response.

Access only on HTTP_RESPONSE events; otherwise, an error will occur.
rspZeroWnd: Number

The number of zero windows in the response.
samlRequestXML: Buffer | Null

The Buffer object that contains the raw XML bytes of the SAML request. If the HTTP request or
response did not contain a SAML request, the value is null.

samlResponseXML: Buffer | Null
The Buffer object that contains the raw XML bytes of the SAML response. If the HTTP request or
response did not contain a SAML response, the value is null.

sqli: Array of Strings
An array of suspicious SQL fragments included in the request. These fragments might contain a
potential SQL injection (SQLi). SQLi is a technique where an attacker can access and tamper with
data by inserting malicious SQL statements into a SQL query.

statusCode: Number
The HTTP status code of the response.

Access only on HTTP_RESPONSE events; otherwise, an error will occur.

Note: Returns a status code of 0 if no valid HTTP_RESPONSE is received.

streamId: Number
The ID of the stream that transferred the resource. Because responses might be returned out of
order, this property is required for HTTP/2 transactions to match requests with responses. The value
is 1 for the HTTP/1.1 upgrade request and null for previous HTTP versions.

title: String
The value in the title element of the HTML content, if present. If the title was compressed, the
decompressed content is returned.

thinkTime: Number
The time elapsed between the server having transferred the response to the client and the client
transferring a new request to the server, expressed in milliseconds. The value is NaN if there is no
valid measurement.

uri: String
The URI without a query string: f.q.d.n/path/.

userAgent: String
The value in the HTTP user-agent header.

xss: Array of Strings
An array of suspicious HTTP request fragments included in the request. These fragments might inject
a malicious client-side script or payload into a trusted website or application. When a victim visits the
website, the malicious script is then injected into the victim's browser.

Trigger Examples

• Example: Track 500-level HTTP responses by customer ID and URI
• Example: Track SOAP requests
• Example: Access HTTP header attributes
• Example: Record data to a session table
• Example: Create an application container

ExtraHop 25.2 Trigger API Reference 123

IBMMQ

The IBMMQ class enables you to store metrics and access properties on IBMMQ_REQUEST and
IBMMQ_RESPONSE events.

Note: The IBMMQ protocol supports EBCDIC encoding.

Events
IBMMQ_REQUEST

Runs on every IBMMQ request processed by the device.
IBMMQ_RESPONSE

Runs on every IBMMQ response processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on either an IBMMQ_REQUEST or IBMMQ_RESPONSE
event.

The event determines which properties are committed to the record object. To view the default
properties committed for each event, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
channel: String

The communication channel name.
conversationId: Number

The identifier for the MQ conversation.
correlationId: String

The IBMMQ correlation ID.
error: String

The error string that corresponds to the error code on the wire.
method: String

The wire protocol request or response method name.

The following ExtraHop method names differ from the Wireshark method names:

ExtraHop Wireshark

ASYNC_MSG_V7 ASYNC_MESSAGE

MQCLOSEv7 SOCKET_ACTION

MQGETv7 REQUEST_MSGS

MQGETv7_REPLY NOTIFICATION

msg: Buffer
A Buffer object containing MQPUT, MQPUT1, MQGET_REPLY, ASYNC_MSG_V7, and
MESSAGE_DATA messages.

ExtraHop 25.2 Trigger API Reference 124

Queue messages that are greater than 32K might be broken into more than one segment. A trigger is
run for each segment and only the first segment has a non-null message.

Buffer data can be converted to a printable string through the toString() function or formatted
through unpack commands.

msgFormat: String
The message format.

msgId: String
The IBMMQ message ID.

pcfError: String
The error string that corresponds to the error code on the wire for the programmable command
formats (PCF) channel.

pcfMethod: String
The wire protocol request or response method name for the programmable command formats (PCF)
channel.

pcfWarning: String
The warning string that corresponds to the warning string on the wire for the programmable
command formats (PCF) channel.

putAppName: String
The application name associated with the MQPUT message.

queue: String
The local queue name. The value is null if there is no MQOPEN, MQOPEN_REPLY, MQSP1(Open), or
MQSP1_REPLY message.

queueMgr: String
The local queue manager. The value is null if there is no INITIAL_DATA message at the start of
the connection.

record: Object
The record object that can be sent to the configured recordstore through a call to
IBMMQ.commitRecord() on either an IBMMQ_REQUEST or IBMMQ_RESPONSE event.

The event on which the method was called determines which properties the default record object
can contain as displayed in the following table:

IBMMQ_REQUEST IBMMQ_RESPONSE

channel channel

clientIsExternal clientIsExternal

clientZeroWnd clientZeroWnd

correlationId correlationId

msgId error

method msgId

msgFormat method

msgSize msgFormat

queue msgSize

queueMgr queue

receiverIsExternal queueMgr

ExtraHop 25.2 Trigger API Reference 125

IBMMQ_REQUEST IBMMQ_RESPONSE

reqBytes receiverIsExternal

reqL2Bytes resolvedQueue

reqPkts resolvedQueueMgr

reqRTO roundTripTime

resolvedQueue rspBytes

resolvedQueueMgr rspL2Bytes

senderIsExternal rspPkts

serverIsExternal rspRTO

serverZeroWnd senderIsExternal

serverIsExternal

serverZeroWnd

warning

reqBytes: Number
The number of application-level request bytes.

reqL2Bytes: Number
The number of L2 request bytes.

reqPkts: Number
The number of request packets.

reqRTO: Number
The number of request retransmission timeouts (RTOs).

reqZeroWnd: Number
The number of zero windows in the request.

resolvedQueue: String
The resolved queue name from MQGET_REPLY, MQPUT_REPLY, or MQPUT1_REPLY messages. If the
queue is remote, the value is different than the value returned by IBMMQ.queue.

resolvedQueueMgr: String
The resolved queue manager from MQGET_REPLY, MQPUT_REPLY, or MQPUT1_REPLY. If the queue
is remote, the value is different than the value returned by IBMMQ.queueMgr.

rfh: Array of Strings
An array of strings located in the optional rules and formatting header (RFH). If there is no RFH
header or the header is empty, the array is empty.

roundTripTime: Number
The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last IBMMQ_REQUEST or
IBMMQ_RESPONSE event ran. The value is NaN if there are no RTT samples.

rspBytes: Number
The number of application-level response bytes.

rspL2Bytes: Number
The number of L2 response bytes.

ExtraHop 25.2 Trigger API Reference 126

rspPkts: Number
The number of request packets.

rspRTO: Number
The number of response retransmission timeouts (RTOs).

rspZeroWnd: Number
The number of zero windows in the response.

totalMsgLength: Number
The total length of the message, expressed in bytes.

warning: String
The warning string that corresponds to the warning string on the wire.

Trigger Examples

• Example: Collect IBMMQ metrics

ICA

The ICA class enables you to store metrics and access properties on ICA_OPEN, ICA_AUTH, ICA_TICK,
and ICA_CLOSE events.

Events
ICA_AUTH

Runs when the ICA authentication is complete.
ICA_CLOSE

Runs when the ICA session is closed.
ICA_OPEN

Runs immediately after the ICA application is initially loaded.
ICA_TICK

Runs periodically while the user interacts with the ICA application.

After the ICA_OPEN event has run at least once, the ICA_TICK event is run any time latency is
reported and returned by the clientLatency or networkLatency properties described below.

Methods
commitRecord(): void

Sends a record to the configured recordstore on either an ICA_OPEN, ICA_TICK, or ICA_CLOSE
event. Record commits on ICA_AUTH events are not supported.

The event determines which properties are committed to the record object. To view the default
properties committed for each event, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
application: String

The name of the application being launched.
authDomain: String

The Windows authentication domain to which the user belongs.

ExtraHop 25.2 Trigger API Reference 127

channels: Array
An array of objects containing information about virtual channels observed since the last ICA_TICK
event.

Access only on ICA_TICKevents; otherwise, an error will occur.

Each object contains the following properties:

name: String
The name of the virtual channel.

description: String
The friendly description of the channel name.

clientBytes: Number
The total number of bytes sent by the client for the channel since the last ICA_TICK event
ran.

serverBytes: Number
The total number of bytes sent by the server for the channel since the last ICA_TICK event
ran.

clientMachine: String
The name of the client machine. The name is displayed by the ICA client and is typically the
hostname of the client machine.

clientBytes: Number
The total number of bytes sent by the client since the last ICA_TICK event ran. Note that this
property does not return the total number of bytes for the entire ICA session.

Access only on ICA_CLOSE or ICA_TICK events; otherwise, an error will occur.
clientCGPMsgCount: Number

The number of client CGP messages since the last ICA_TICK event.

Access only on ICA_TICK events; otherwise, an error will occur.
clientLatency: Number

The latency of the client, expressed in milliseconds, as reported by the End User Experience
Management (EUEM) beacon.

Client latency is reported when a packet from the client on the EUEM channel reports the result of a
single ICA round trip measurement.

Access only on ICA_TICK events; otherwise, an error will occur.
clientL2Bytes: Number

The total number of L2 client bytes observed since the last ICA_TICK event ran. Note that this
property does not return the total number of bytes for the entire ICA session.

Access only on ICA_CLOSE or ICA_TICK events; otherwise, an error will occur.
clientMsgCount: Number

The number of client messages since the last ICA_TICK event.

Access only on ICA_TICK events; otherwise, an error will occur.
clientPkts: Number

The total number of packets sent by the client since the last ICA_TICK event ran. Note that this
property does not return the total number of packets for the entire ICA session.

Access only on ICA_CLOSE or ICA_TICK events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 128

clientRTO: Number
The total number of client retransmission timeouts (RTOs) observed since the last ICA_TICK event
ran. Note that this property does not return the total number of client RTOs for the entire ICA
session.

Access only on ICA_CLOSE or ICA_TICK events; otherwise, an error will occur.
clientZeroWnd: Number

The total number of zero windows sent by the client since the last ICA_TICK event ran. Note that
this property does not return the total number of zero windows for the entire ICA session.

Access only on ICA_CLOSE or ICA_TICK events; otherwise, an error will occur.
clientType: String

The type of ICA client, which is the user-agent equivalent to ICA.
clipboardData: Buffer

A Buffer object containing raw data from the clipboard transfer.

The value is null if the ICA_TICK event did not result from a clipboard data transfer, or if the
channel specified by the tickChannel property is not a clipboard channel.

The maximum number of bytes in the buffer is specified by the Clipboard Bytes to Buffer field when
the trigger was configured through the ExtraHop system. The default maximum object size is 1024
bytes. For more information, see the Advanced trigger options.

To determine the direction of the clipboard data transfer, access this property through
Flow.sender, Flow.receiver, Flow.client, or Flow.server.

Access only on ICA_TICK events; otherwise, an error will occur.
clipboardDataType: String

The type of data on the clipboard transfer. The following clipboard types are supported:

• TEXT

• BITMAP

• METAFILEPICT

• SYMLINK

• DIF

• TIFF

• OEMTEXT

• DIB

• PALLETTE

• PENDATA

• RIFF

• WAVE

• UNICODETEXT

• EHNMETAFILE

• OWNERDISPLAY

• DSPTEXT

• DSPBITMAP

• DSPMETAFILEPICT

• DSPENHMETAFILE

The value is null if the ICA_TICK event did not result from a clipboard data transfer, or if the
channel specified by the tickChannel property is not a clipboard channel.

Access only on ICA_TICK events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 129

frameCutDuration: Number
The frame cut duration, as reported by the EUEM beacon.

Access only on ICA_TICK events; otherwise, an error will occur.
frameSendDuration: Number

The frame send duration, as reported by the EUEM beacon.

Access only on ICA_TICK events; otherwise, an error will occur.
host: String

The host name of the Citrix server.
isAborted: Boolean

The value is true if the application fails to launch successfully.

Access only on ICA_CLOSE events; otherwise, an error will occur.
isCleanShutdown: Boolean

The value is true if the application shuts down cleanly.

Access only on ICA_CLOSE events; otherwise, an error will occur.
isClientDiskRead: Boolean

The value is true if a file was read from the client disk to the Citrix server. The value is null if the
command is not a file operation, or if the channel specified by the tickChannel property is not a
file channel.

Access only on ICA_TICK events; otherwise, an error will occur.
isClientDiskWrite: Boolean

The value is true if a file was written from the Citrix server to the client disk. The value is null if
the command is not a file operation, or if the channel specified by the tickChannel property is not
a file channel.

Access only on ICA_TICK events; otherwise, an error will occur.
isEncrypted: Boolean

The value is true if the application is encrypted with RC5 encryption.
isSharedSession: Boolean

The value is true if the application is launched over an existing connection.
launchParams: String

The string that represents the parameters.
loadTime: Number

The load time of the given application, expressed in milliseconds.

Note: The load time is recorded only for the initial application load. The ExtraHop system
does not measure load time for applications launched over existing sessions and
instead reports the initial load time on subsequent application loads. Choose
ICA.isSharedSession to distinguish between initial and subsequent application
loads.

loginTime: Number
The user login time, expressed in milliseconds.

Access only on ICA_OPEN, ICA_CLOSE, or ICA_TICK events; otherwise, an error will occur.

Note: The login time is recorded only for the initial application load. The ExtraHop system
does not measure login time for applications launched over existing sessions and
instead reports the initial login time on subsequent application loads. Choose
ICA.isSharedSession to distinguish between initial and subsequent application
loads.

ExtraHop 25.2 Trigger API Reference 130

networkLatency: Number
The current latency advertised by the client, expressed in milliseconds.

Network latency is reported when a specific ICA packet from the client contains latency information.

Access only on ICA_TICK events; otherwise, an error will occur.
payload: Buffer

The Buffer object that contains the raw payload bytes of the file that was read or written on the
event.

The buffer contains the N first bytes of the payload, where N is the number of payload bytes
specified by the Bytes to Buffer field when the trigger was configured through the ExtraHop WebUI.
The default number of bytes is 2048. For more information, see Advanced trigger options.

The value is null if the channel specified by the tickChannel property is not a file channel.

Access only on ICA_TICK events; otherwise, an error will occur.
printerName: String

The name of the printer driver.

Access only on ICA_TICK events; otherwise, an error will occur.
program: String

The name of the program, or application, that is being launched.
record: Object

The record object that can be sent to the configured recordstore through a call to
ICA.commitRecord() on either an ICA_OPEN, ICA_TICK, or ICA_CLOSE event.

The event on which the method was called determines which properties the default record object
can contain as displayed in the following table:

ICA_CLOSE ICA_OPEN ICA_TICK

authDomain authDomain authDomain

clientBytes clientIsExternal clientIsExternal

clientIsExternal clientMachine clientBytes

clientL2Bytes clientType clientCGPMsgCount

clientMachine clientZeroWnd clientL2Bytes

clientPkts host clientLatency

clientRTO isEncrypted clientMachine

clientType isSharedSession clientMsgCount

clientZeroWnd launchParams clientPkts

host loadTime clientRTO

isAborted loginTime clientType

isCleanShutdown program clientZeroWnd

isEncypted receiverIsExternal frameCutDuration

isSharedSession senderIsExternal frameSendDuration

launchParams serverIsExternal host

loadTime serverZeroWnd isClientDiskRead

ExtraHop 25.2 Trigger API Reference 131

ICA_CLOSE ICA_OPEN ICA_TICK

loginTime user isClientDiskWrite

program isEncrypted

receiverIsExternal isSharedSession

roundTripTime launchParams

senderIsExternal loadTime

serverBytes loginTime

serverIsExternal networkLatency

serverL2Bytes program

serverPkts receiverIsExternal

serverRTO resource

serverZeroWnd roundTripTime

user senderIsExternal

serverBytes

serverCGPMsgCount

serverIsExternal

serverL2Bytes

serverMsgCount

serverPkts

serverRTO

serverZeroWnd

tickChannel

user

Access the record object only on ICA_OPEN, ICA_CLOSE, and ICA_TICK events; otherwise, an
error will occur.

resource: String
The path of the file that was read or written on the event, if known. The value is null if the channel
specified by the tickChannel property is not a file channel.

Access only on ICA_TICK events; otherwise, an error will occur.
resourceOffset: Number

The offset of the file that was read or written on the event, if known. The value is null if the
channel specified by the tickChannel property is not a file channel.

Access only on ICA_TICK events; otherwise, an error will occur.
roundTripTime: Number

The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK)
packet. The median value is calculated by sampling the RTTs observed since the last ICA_CLOSE or
ICA_TICK event ran. The value is NaN if there are no RTT samples.

Access only on ICA_CLOSE or ICA_TICK events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 132

serverBytes: Number
The total number of bytes sent by the client since the last ICA_TICK event ran. Note that this
property does not return the total number of bytes for the entire ICA session.

Access only on ICA_CLOSE or ICA_TICK events; otherwise, an error will occur.
serverCGPMsgCount: Number

The number of CGP server messages since the last ICA_TICK event.

Access only on ICA_TICK events; otherwise, an error will occur.
serverL2Bytes: Number

The total number of L2 server bytes observed since the last ICA_TICK event ran. Note that this
property does not return the total number of bytes for the entire ICA session.

Access only on ICA_CLOSE or ICA_TICK events; otherwise, an error will occur.
serverMsgCount: Number

The number of server messages since the last ICA_TICK event.

Access only on ICA_TICK events; otherwise, an error will occur.
serverPkts: Number

The total number of packets sent by the server since the last ICA_TICK event ran. Note that this
property does not return the total number of packets for the entire ICA session.

Access only on ICA_CLOSE or ICA_TICK events; otherwise, an error will occur.
serverRTO: Number

The total number of server retransmission timeouts (RTOs) observed since the last ICA_TICK event
ran. Note that this property does not return the total number of server RTOs for the entire ICA
session.

Access only on ICA_CLOSE or ICA_TICK events; otherwise, an error will occur.
serverZeroWnd: Number

The total number of zero windows sent by the server since the last ICA_TICK event ran. Note that
this property does not return the total number of zero windows for the entire ICA session.

Access only on ICA_CLOSE or ICA_TICK events; otherwise, an error will occur.
tickChannel: String

The name of the virtual channel that resulted in the current ICA_TICK event. The following
channels are supported:

• CTXCLI: Clipboard

• CTXCDM: File

• CTXEUE: End user experience monitoring

Access only on ICA_TICK events; otherwise, an error will occur.
user: String

The name of the user, if available.

ICMP
The ICMP class enables you to store metrics and access properties on ICMP_MESSAGE events.

Events
ICMP_MESSAGE

Runs on every ICMP message processed by the device.

ExtraHop 25.2 Trigger API Reference 133

Methods
commitRecord(): void

Sends a record to the configured recordstore on an ICMP_MESSAGE event.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
gwAddr: IPAddress

For a redirect message, returns the address of the gateway to which traffic for the network specified
in the internet destination network field of the original datagram's data should be sent. Returns null
for all other messages.

Message ICMPv4 Type ICMPv6 Type

Redirect Message 5 n/a

hopLimit: Number
The ICMP packet time to live or hop count.

isError: Boolean
The value is true for message types in the following table.

Message ICMPv4 Type ICMPv6 Type

Destination Unreachable 3 1

Redirect 5 n/a

Source Quench 4 n/a

Time Exceeded 11 3

Parameter Problem 12 4

Packet Too Big n/a 2

isQuery: Boolean
The value is true for message types in the following table.

Message ICMPv4 Type ICMPv6 Type

Echo Request 8 128

Information Request 15 n/a

Timestamp request 13 n/a

Address Mask Request 17 n/a

Router Discovery 10 151

Multicast Listener Query n/a 130

Router Solicitation (NDP) n/a 133

Neighbor Solicitation n/a 135

ICMP Node Information Query n/a 139

ExtraHop 25.2 Trigger API Reference 134

Message ICMPv4 Type ICMPv6 Type

Inverse Neighbor Discovery
Solicitation

n/a 141

Home Agent Address Discovery
Solicitation

n/a 144

Mobile Prefix Solicitation n/a 146

Certification Path Solicitation n/a 148

isReply: Boolean
The value is true for message types in the following table.

Message ICMPv4 Type ICMPv6 Type

Echo Reply 0 129

Information Reply 16 n/a

Timestamp Reply 14 n/a

Address Mask Reply 18 n/a

Multicast Listener Done n/a 132

Multicast Listener Report n/a 131

Router Advertisement (NDP) n/a 134

Neighbor Advertisement n/a 136

ICMP Node Information Response n/a 140

Inverse Neighbor Discovery
Advertisement

n/a 142

Home Agent Address Discovery Reply
Message

n/a 145

Mobile Prefix Advertisement n/a 147

Certification Path Advertisement n/a 149

msg: Buffer
A buffer object containing up to message_length_max bytes of the ICMP message. The
message_length_max option is configured in the ICMP profile in the running config.

The following running config example changes the ICMP message_length_max from its default of
4096 bytes to 1234 bytes:

"capture": {
 "app_proto": {
 "ICMP": {
 "message_length_max": 1234
 }
 }
}

ExtraHop 25.2 Trigger API Reference 135

Tip: You can convert the buffer object to a string through the String.fromCharCode
method. To view the string in the runtime log, run the JSON.stringify method, as
shown in the following example code:

const icmp_msg = String.fromCharCode.apply(String,
 ICMP.msg);
debug('ICMP message text: ' + JSON.stringify(icmp_msg,
 null, 4));

You can also search the ICMP message strings with the includes and test methods,
as shown in the following example code:

const substring_search = 'search term';
const regex_search = '^search term$';
const icmp_msg = String.fromCharCode.apply(String,
 ICMP.msg);

if (icmp_msg.includes(substring_search){
 debug('ICMP message includes substring');
}
if (regex_search.test(icmp_msg)){
 debug('ICMP message matches regex');
}

msgCode: Number
The ICMP message code.

msgId: Number
The ICMP message identifier for Echo Request, Echo Reply, Timestamp Request, Timestamp Reply,
Information Request, and Information Reply messages. The value is null for all other message
types.

The following table displays type IDs for the ICMP messages:

Message ICMPv4 Type ICMPv6 Type

Echo Request 8 128

Echo Reply 0 129

Timestamp Request 13 n/a

Timestamp Reply 14 n/a

Information Request 15 n/a

Information Reply 16 n/a

msgLength: Number
The length of the ICMP message, expressed in bytes.

msgText: String
The descriptive text for the message (for example, echo request or port unreachable).

msgType: Number
The ICMP message type.

The following table displays the ICMPv4 message types available:

Type Message

0 Echo Reply

ExtraHop 25.2 Trigger API Reference 136

Type Message

1 and 2 Unassigned

3 Destination Unreachable

4 Source Quench

5 Redirect Message

6 Alternate Host Address (deprecated)

7 Unassigned

8 Echo Request

9 Router Advertisement

10 Router Solicitation

11 Time Exceeded

12 Parameter Problem: Bad IP header

13 Timestamp

14 Timestamp Reply

15 Information Request (deprecated)

16 Information Reply (deprecated)

17 Address Mask Request (deprecated)

18 Address Mask Reply (deprecated)

19 Reserved

20-29 Reserved

30 Traceroute (deprecated)

31 Datagram Conversion Error (deprecated)

32 Mobile Host Redirect (deprecated)

33 Where Are You (deprecated)

34 Here I Am (deprecated)

35 Mobile Registration Request (deprecated)

36 Mobile Registration Reply (deprecated)

37 Domain Name Request (deprecated)

38 Domain Name Reply (deprecated)

39 Simple Key-Management for Internet Protocol
(deprecated)

40 Photuris (deprecated)

41 ICMP experimental

42 Extended Echo Request

43 Extended Echo Reply

ExtraHop 25.2 Trigger API Reference 137

Type Message

44-255 Unassigned

The following table displays the ICMPv6 message types available:

Type Message

1 Destination Unreachable

2 Packet Too Big

3 Time Exceeded

4 Parameter Problem

100 Private Experimentation

101 Private Experimentation

127 Reserved for expansion of ICMPv6 error messages

128 Echo Request

129 Echo Reply

130 Multicast Listener Query

131 Multicast Listener Report

132 Multicast Listener Done

133 Router Solicitation

134 Router Advertisement

135 Neighbor Solicitation

136 Neighbor Advertisement

137 Redirect Message

138 Router Renumbering

139 ICMP Node Information Query

140 ICMP Node Information Response

141 Inverse Neighbor Discovery Solicitation Message

142 Inverse Neighbor Discovery Advertisement Message

143 Multicast Listener Discovery (MLDv2) reports

144 Home Agent Address Discovery Request Message

145 Home Agent Address Discovery Reply Message

146 Mobile Prefix Solicitation

147 Mobile Prefix Advertisement

148 Certification Path Solicitation

149 Certification Path Advertisement

150 ICMP messages utilized by experimental mobility
protocols such as Seamoby

ExtraHop 25.2 Trigger API Reference 138

Type Message

151 Multicast Router Advertisement

152 Multicast Router Solicitation

153 Multicast Router Termination

155 RPL Control Message

156 ILNPv6 Locator Update Message

157 Duplicate Address Request

158 Duplicate Address Confirmation

159 MPL Control Message

160 Extended Echo Request - No Error

161 Extended Echo Reply

200 Private Experimentation

201 Private Experimentation

255 Reserved for expansion of ICMPv6 informational
messages

nextHopMTU: Number
An ICMPv4 Destination Unreachable or an ICMPv6 Packet Too Big message, the
maximum transmission unit of the next-hop link. The value is null for all other messages.

Message ICMPv4 Type ICMPv6 Type

Destination Unreachable 3 n/a

Packet Too Big n/a 2

original: Object
An object containing the following elements from the IP datagram that caused the ICMP message to
be sent:
ipproto: String

The IP protocol of the datagram, such as TCP, UDP, ICMP, or ICMPv6.
ipver: String

The IP version of the datagram, such as IPv4 or IPv6.
srcAddr: IPAddress

The IPAddress of the datagram sender.
srcPort: Number

The port number of the datagram sender.
dstAddr: IPAddress

The IPAddress of the datagram receiver.
dstPort: Number

The port number of the datagram receiver.

The value is null if the internet header and 64 bits of the Original Data datagram is not present in
the message or if the IP protocol is not TCP or UDP.

Access only on ICMP_MESSAGE events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 139

pointer: Number
For a Parameter Problem message, the octet of the original datagram's header where the error was
detected. The value is null for all other messages.

Message ICMPv4 Type ICMPv6 Type

Parameter Problem 12 4

record: Object
The record object that can be sent to the configured recordstore through a call to
ICMP.commitRecord() on an ICMP_MESSAGE event.

The default record object can contain the following properties:

• clientIsExternal

• gwAddr

• hopLimit

• msgCode

• msgId

• msgLength

• msgText

• msgType

• nextHopMTU

• pointer

• receiverIsExternal

• senderIsExternal

• serverIsExternal

• seqNum

• version

seqNum: Number
The ICMP sequence number for Echo Request, Echo Reply, Timestamp Request, Timestamp Reply,
Information Request, and Information Reply messages. The value is null for all other messages.

version: Number
The version of the ICMP message type, which can be ICMPv4 or ICMPv6.

Kerberos

The Kerberos class enables you to store metrics and access properties on KERBEROS_REQUEST and
KERBEROS_RESPONSE events.

Events
KERBEROS_REQUEST

Runs on every Kerberos AS-REQ and TGS-REQ message type processed by the device.
KERBEROS_RESPONSE

Runs on every Kerberos AS-REP and TGS-REP message type processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on either a KERBEROS_REQUEST or
KERBEROS_RESPONSE event.

ExtraHop 25.2 Trigger API Reference 140

The event determines which properties are committed to the record object. To view the default
properties committed for each event, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
addresses: Array of Objects

The addresses from which the requested ticket is valid.

Access only on KERBEROS_REQUEST events; otherwise, an error will occur.
apOptions: Object

An object containing boolean values for each option flag in AP_REQ messages.

Access only on KERBEROS_REQUEST events; otherwise, an error will occur.
clientPrincipalName: String

The client principal name.
cNames: Array of Strings

The name portions of the principal identifier.
cNameType: String

The type for the cNames field.
cRealm: String

The client realm.
eData: Buffer

Additional information about the error returned in the response.

Access only on KERBEROS_RESPONSE events; otherwise, an error will occur.
error: String

The error returned.

Access only on KERBEROS_RESPONSE events; otherwise, an error will occur.
from: String

In AS_REQ and TGS_REQ message types, the time when the requested ticket is to be postdated to.

Access only on KERBEROS_REQUEST events; otherwise, an error will occur.
isAccountPrivileged: Boolean

The value is true if the account specified in the clientPrincipalName property is privileged.
kdcOptions: Object

An object containing boolean values for each option flag in AS_REQ and TGS_REQ messages.

Access only on KERBEROS_REQUEST events; otherwise, an error will occur.
msgType: String

The message type. Possible values are:

• AP_REP

• AP_REQ

• AS_REP

• AS_REQAUTHENTICATOR

• ENC_AS_REP_PART

• ENC_KRB_CRED_PART

• ENC_KRB_PRIV_PART

• ENC_P_REP_PART

• ENC_TGS_REP_PART

ExtraHop 25.2 Trigger API Reference 141

• ENC_TICKET_PART

• KRB_CRED

• KRB_ERROR

• KRB_PRIV

• KRB_SAFE

• TGS_REP

• TGS_REQ

• TICKET

paData: Array of Objects
The pre-authentication data.

processingTime: Number
The processing time, expressed in milliseconds.

Access only on KERBEROS_RESPONSE events; otherwise, an error will occur.
realm: String

The server realm. In an AS_REQ message type, this is the client realm.
record: Object

The record object that can be sent to the configured recordstore through a call to
Kerberos.commitRecord() on either a KERBEROS_REQUEST or KERBEROS_RESPONSE event.

The event on which the method was called determines which properties the default record object
can contain as displayed in the following table:

KERBEROS_REQUEST KERBEROS_RESPONSE

clientIsExternal clientIsExternal

cNames cNames

cNameType cNameType

cRealm cRealm

clientZeroWnd clientZeroWnd

encryptedTicketLength encryptedTicketLength

eType error

from msgType

isAccountPrivileged isAccountPrivileged

msgType processingTime

realm realm

receiverIsExternal receiverIsExternal

reqBytes roundTripTime

reqL2Bytes rspBytes

reqPkts rspL2Bytes

reqRTO rspPkts

senderIsExternal rspRTO

serverZeroWnd senderIsExternal

sNames serverIsExternal

ExtraHop 25.2 Trigger API Reference 142

KERBEROS_REQUEST KERBEROS_RESPONSE

sNameType sNames

ticketETypeName sNameType

till ticketETypeName

serverZeroWnd

reqETypes: Array of Numbers
An array of numbers that correspond to preferred encryption methods.

Encryption method Number

ntlm-hash -150

aes256-cts-hmac-sha1-96-plain -149

aes128-cts-hmac-sha1-96-plain -148

rc4-plain-exp -141

rc4-plain -140

rc4-plain-old-exp -136

rc4-hmac-old-exp -135

rc4-plain-old -134

rcr-hmac-old -133

des-plain -132

rc4-sha -131

rc4-lm -130

rc4-plain2 -129

rc4-md4 -128

null 0

des-cbc-crc 1

des-cbc-md4 2

des-cbc-md5 3

des3-cbc-md5 5

des3-cbc-sha1 7

dsaWithSHA1-CmsOID 9

md5WithRSAEncryption-CmsOID 10

sha1WithRSAEncryption-CmsOID 11

rc2CBC-EnvOID 12

rsaEncryption-EnvOID 13

rsaES-OAEP-ENV-OID 14

des-ede3-cbc-Env-OID 15

ExtraHop 25.2 Trigger API Reference 143

Encryption method Number

des3-cbc-sha1-kd 16

aes128-cts-hmac-sha1-96 17

aes256-cts-hmac-sha1-96 18

aes128-cts-hmac-sha256-128 19

aes256-cts-hmac-sha384-192 20

rc4-hmac 23

rc4-hmac-exp 24

camellia128-cts-cmac 25

camellia256-cts-cmac 26

subkey-keymaterial 65

reqETypeNames: Array of Strings
An array of the preferred encryption methods.

reqZeroWnd: Number
The number of zero windows in the request.

rspZeroWnd: Number
The number of zero windows in the response.

serverPrincipalName: String
The server principal name (SPN).

sNames: Array of Strings
The name portions of the server principal identifier.

sNameType: String
The type for the sNames field.

ticket: Object
A newly generated ticket in an AP_REP message or a ticket to authenticate the client to the server in
an AP_REQ message.

till: String
The expiration date requested by the client in a ticket request.

Access only on KERBEROS_REQUEST events; otherwise, an error will occur.

LDAP

The LDAP class enables you to store metrics and access properties on LDAP_REQUEST and
LDAP_RESPONSE events.

Events
LDAP_REQUEST

Runs on every LDAP request processed by the device.
LDAP_RESPONSE

Runs on every LDAP response processed by the device.

ExtraHop 25.2 Trigger API Reference 144

Methods
commitRecord(): void

Sends a record to the configured recordstore on either an LDAP_REQUEST or LDAP_RESPONSE
event.

The event determines which properties are committed to the record object. To view the default
properties committed for each event, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
bindDN: String

The bind DN of the LDAP request.

Access only on LDAP_REQUEST events; otherwise, an error will occur.
controls: Array of Objects

An array of objects containing the LDAP controls of the LDAP request. Each object contains the
following properties:
controlType: String

The OID of the LDAP control.
criticality: Boolean

Indicates whether the control is required. If criticality is set to true, the server should
process the control or fail the operation.

controlValue: Buffer
The optional control value, which specifies additional information about how the control
should be processed.

Access only on LDAP_REQUEST events; otherwise, an error will occur.
dn: String

The LDAP distinguished name (DN). If no DN is set, <ROOT> will be returned instead.
encryptionProtocol: String

The protocol that the transaction is encrypted with.
error: String

The LDAP short error string as defined in the protocol (for example, noSuchObject).

Access only on LDAP_RESPONSE events; otherwise, an error will occur.

Result Code Result String

1 operationsError

2 protocolError

3 timeLimitExceeded

4 sizeLimitExceeded

7 authMethodNotSupported

8 strongerAuthRequired

11 adminLimitExceeded

12 unavailableCriticalExtension

13 confidentialityRequired

ExtraHop 25.2 Trigger API Reference 145

Result Code Result String

16 noSuchAttribute

17 undefinedAttributeType

18 inappropriateMatching

19 constraintViolation

20 attributeOrValueExists

21 invalidAttributeSyntax

32 NoSuchObject

33 aliasProblem

34 invalidDNSSyntax

36 aliasDeferencingProblem

48 inappropriateAuthentication

49 invalidCredentials

50 insufficientAccessRights

51 busy

52 unavailable

53 unwillingToPerform

54 loopDetect

64 namingViolation

65 objectClassViolation

66 notAllowedOnNonLeaf

67 notAllowedOnRDN

68 entryAlreadyExists

69 objectClassModsProhibited

71 affectsMultipleDSAs

80 other

errorDetail: String
The LDAP error detail, if available for the error type. For example, "protocolError : historical protocol
version requested, use LDAPv3 instead."

Access only on LDAP_RESPONSE events; otherwise, an error will occur.
isEncrypted: Boolean

The value is true if the transaction is encrypted with TLS.
isDecrypted: Boolean

The value is true if the ExtraHop system securely decrypted and analyzed the transaction. Decrypted
traffic analysis can expose advanced threats that hide within encrypted traffic.

isPasswordEmpty: Boolean
The value is true if the request does not specify a password for authentication.

ExtraHop 25.2 Trigger API Reference 146

Access only on LDAP_REQUEST events; otherwise, an error will occur.
isSigned: Boolean

The value is true if the LDAP transaction has been signed by the source machine.
method: String

The LDAP method.
msgId: Number

The LDAP message ID, which correlates LDAP requests and responses.
msgSize: Number

The size of the LDAP message, expressed in bytes.
processingTime: Number

The server processing time, expressed in milliseconds. The value is NaN on malformed and aborted
responses, if the timing is invalid, or if the timing is not available. Available for the following:

• BindRequest

• SearchRequest

• ModifyRequest

• AddRequest

• DelRequest

• ModifyDNRequest

• CompareRequest

• ExtendedRequest

Applies only to LDAP_RESPONSE events.
record: Object

The record object that can be sent to the configured recordstore through a call to
LDAP.commitRecord() on either an LDAP_REQUEST or LDAP_RESPONSE event.

The event on which the method was called determines which properties the default record object
can contain as displayed in the following table:

LDAP_REQUEST LDAP_RESPONSE

bindDN clientIsExternal

clientIsExternal clientZeroWnd

clientZeroWnd dn

dn error

isSigned isSigned

method errorDetail

msgSize method

receiverIsExternal msgSize

reqBytes processingTime

reqL2Bytes receiverIsExternal

reqPkts roundTripTime

reqRTO rspBytes

saslMechanism rspL2Bytes

searchFilter rspPkts

ExtraHop 25.2 Trigger API Reference 147

LDAP_REQUEST LDAP_RESPONSE

searchScope rspRTO

senderIsExternal saslMechanism

serverIsExternal senderIsExternal

serverZeroWnd serverIsExternal

serverZeroWnd

reqBytes: Number
The number of L4 request bytes, excluding L4 headers.

reqL2Bytes: Number
The number of L2 request bytes, including L2 headers.

reqPkts: Number
The number of request packets.

reqRTO: Number
The number of request retransmission timeouts (RTOs).

reqZeroWnd: Number
The number of zero windows in the request.

roundTripTime: Number
The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last LDAP_REQUEST or
LDAP_RESPONSE event ran. The value is NaN if there are no RTT samples.

rspBytes: Number
The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

rspL2Bytes: Number
The number of L2 response bytes, including protocol overhead, such as headers.

rspPkts: Number
The number of response packets.

rspRTO: Number
The number of response retransmission timeouts (RTOs).

rspZeroWnd: Number
The number of zero windows in the response.

saslMechanism: String
The string that defines the SASL mechanism that identifies and authenticates a user to a server.

searchAttributes: Array
The attributes to return from objects that match the filter criteria.

Access only on LDAP_REQUEST events; otherwise, an error will occur.
searchFilter: String

The mechanism to allow certain entries in the subtree and exclude others.

Access only on LDAP_REQUEST events; otherwise, an error will occur.
searchResults: Array of Objects

An array of objects containing the search results returned in an LDAP response. Each object contains
the following properties:

ExtraHop 25.2 Trigger API Reference 148

type: String
The type of search result.

values: Array of Buffers
An array of Buffer objects containing the search result values.

Access only on LDAP_REQUEST events; otherwise, an error will occur.
searchScope: String

The depth of a search within the search base.

Access only on LDAP_REQUEST events; otherwise, an error will occur.

LLDP

The LLDP class enables you to access properties on LLDP_FRAME events.

Events
LLDP_FRAME

Runs on every LLDP frame processed by the device.

Properties
chassisId: Buffer

The chassis ID, obtained from the chassisId data field, or type-length-value (TLV).
chassisIdSubtype: Number

The chassis ID subtype, obtained from the chassisID TLV.
destination: String

The destination MAC address. The destination MAC address. The most common destinations are
01-80-C2-00-00-00, 01-80-C2-00-00-03 and 01-80-C2-00-00-0E, indicating multicast
addresses.

optTLVs: Array
An array containing the optional TLVs. Each TLV is an object with the following properties:
customSubtype: Number

The subtype of an organizationally specific TLV.
isCustom: Boolean

Returns true if the object is an organizationally specific TLV.
oui: Number

The organizationally unique identifier for organizationally specific TLVs.
type: Number

The type of TLV.
value: String

The value of the TLV.
portId: Buffer

The port ID, obtained from the portId TLV.
portIdSubtype: Number

The port ID subtype, obtained from the portId TLV.
source: Device

The device sending the LLDP frame.

ExtraHop 25.2 Trigger API Reference 149

ttl: Number
The time to live, expressed in seconds. This is the length of time during which the information in this
frame is valid, starting with when the information is received.

LLMNR

The LLMNR class enables you to store metrics and access properties on LLMNR_REQUEST and
LLMNR_RESPONSE events.

Events
LLMNR_REQUEST

Runs on every LLMNR request processed by the device.
LLMNR_RESPONSE

Runs on every LLMNR response processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on an LLMNR_REQUEST or LLMNR_RESPONSE event.

The event determines which properties are committed to the record object. To view the default
properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
answer: Object

An object that corresponds to an answer resource record.

Access only on LLMNR_RESPONSE events; otherwise, an error will occur.

The objects contain the following properties:

data: String | IPAddress
The value of data depends on the type. The value is null for unsupported record types.
Supported record types include:

• A

• AAAA

• NS

• PTR

• CNAME

• MX

• SRV

• SOA

• TXT

name: String
The record name.

ttl: Number
The time-to-live value.

type: String
The LLMNR record type.

ExtraHop 25.2 Trigger API Reference 150

error: String
The name of the LLMNR error code, in accordance with IANA LLMNR parameters.

Returns OTHER for error codes that are unrecognized by the system; however, errorNum specifies
the numeric code value.

Access only on LLMNR_RESPONSE events; otherwise, an error will occur.
errorNum: Number

The numeric representation of the LLMNR error code in accordance with IANA LLMNR parameters.

Access only on LLMNR_RESPONSE events; otherwise, an error will occur.
opcode: String

The name of the LLMNR operation code in accordance with IANA LLMNR parameters. The following
codes are recognized by the ExtraHop system:

OpCode Name

0 Query

1 IQuery (Inverse Query - Obsolete)

2 Status

3 Unassigned

4 Notify

5 Update

6-15 Unassigned

Returns OTHER for codes that are unrecognized by the system; however, the opcodeNum property
specifies the numeric code value.

opcodeNum: Number
The numeric representation of the LLMNR operation code in accordance with IANA LLMNR
parameters.

qname: String
The hostname queried.

qtype: String
The name of the LLMNR request record type in accordance with IANA LLMNR parameters.

Returns OTHER for types that are unrecognized by the system; however, the qtypeNum property
specifies the numeric type value.

qtypeNum: Number
The numeric representation of the LLMNR request record type in accordance with IANA LLMNR
parameters.

record: Object
The record object that can be sent to the configured recordstore through a call to
LLMNR.commitRecord() on either an LLMNR_REQUEST or LLMNR_RESPONSE event.

The default record object can contain the following properties:

LLMNR_REQUEST LLMNR_RESPONSE

clientIsExternal answer

opcode clientIsExternal

qname error

ExtraHop 25.2 Trigger API Reference 151

LLMNR_REQUEST LLMNR_RESPONSE

qtype opcode

receiverIsExternal qname

reqBytes qtype

reqL2Bytes receiverIsExternal

reqPkts rspBytes

senderIsExternal rspL2Bytes

serverIsExternal rspPkts

senderIsExternal

serverIsExternal

reqBytes: Number
The number of L4 request bytes, excluding L4 headers.

Access only on LLMNR_REQUEST events; otherwise, an error will occur.
reqL2Bytes: Number

The number of L2 request bytes, including L2 headers.

Access only on LLMNR_REQUEST events; otherwise, an error will occur.
reqPkts: Number

The number of request packets.

Access only on LLMNR_REQUEST events; otherwise, an error will occur.
rspBytes: Number

The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

Access only on LLMNR_RESPONSE events; otherwise, an error will occur.
rspL2Bytes: Number

The number of L2 response bytes, including protocol overhead, such as headers.

Access only on LLMNR_RESPONSE events; otherwise, an error will occur.
rspPkts: Number

The number of application-level response bytes.

Access only on LLMNR_RESPONSE events; otherwise, an error will occur.

Memcache

The Memcache class enables you to store metrics and access properties on MEMCACHE_REQUEST and
MEMCACHE_RESPONSE events.

Events
MEMCACHE_REQUEST

Runs on every memcache request processed by the device.
MEMCACHE_RESPONSE

Runs on every memcache response processed by the device.

ExtraHop 25.2 Trigger API Reference 152

Methods
commitRecord(): void

Sends a record to the configured recordstore on either a MEMCACHE_REQUEST or
MEMCACHE_RESPONSE event.

The event determines which properties are committed to the record object. To view the default
properties committed for each event, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
accessTime: Number

The access time, expressed in milliseconds. Available only if the first key that was requested
produced a hit.

Access only on MEMCACHE_RESPONSE events; otherwise, an error will occur.
error: String

The detailed error message recorded by the ExtraHop system.

Access only on MEMCACHE_RESPONSE events; otherwise, an error will occur.
hits: Array

An array of objects containing the Memcache key and key size.

Access only on MEMCACHE_RESPONSE events; otherwise, an error will occur.

key: String | null
The Memcache key for which this was a hit, if available.

size: Number
The size of the value returned for the key, expressed in bytes.

isBinaryProtocol: Boolean
The value is true if the request/response corresponds to the binary version of the memcache
protocol.

isNoReply: Boolean
The value is true if the request has the "noreply" keyword and therefore should never receive a
response (text protocol only).

Access only on MEMCACHE_REQUEST events; otherwise, an error will occur.
isRspImplicit: Boolean

The value is true if the response was implied by a subsequent response from the server (binary
protocol only).

Access only on MEMCACHE_RESPONSE events; otherwise, an error will occur.
method: String

The Memcache method as recorded in Metrics section of the ExtraHop system.
misses: Array

An array of objects containing the Memcache key.

Access only on MEMCACHE_RESPONSE events; otherwise, an error will occur.

key: String | null
The Memcache key for which this was a miss, if available.

ExtraHop 25.2 Trigger API Reference 153

record: Object
The record object that can be sent to the configured recordstore through a call to
Memcache.commitRecord() on either a MEMCACHE_REQUEST or MEMCACHE_RESPONSE event.

The event on which the method was called determines which properties the default record object
can contain as displayed in the following table:

MEMCACHE_REQUEST MEMCACHE_RESPONSE

clientIsExternal accessTime

clientZeroWnd clientIsExternal

isBinaryProtocol clientZeroWnd

isNoReply error

method hits

receiverIsExternal isBinaryProtocol

reqBytes isRspImplicit

reqL2Bytes method

reqPkts misses

reqRTO receiverIsExternal

reqSize roundTripTime

senderIsExternal rspBytes

serverIsExternal rspL2Bytes

serverZeroWnd rspPkts

vbucket rspRTO

senderIsExternal

serverIsExternal

serverZeroWnd

statusCode

vbucket

reqBytes: Number
The number of L4 request bytes, excluding L4 headers.

reqKeys: Array
An array containing the Memcache key strings sent with the request.

The value of the reqKeys property is the same when accessed on either the MEMCACHE_REQUEST
or the MEMCACHE_RESPONSE event.

reqL2Bytes: Number
The number of L2 request bytes, including L2 headers.

reqPkts: Number
The number of request packets.

reqRTO: Number
The number of request retransmission timeouts (RTOs).

ExtraHop 25.2 Trigger API Reference 154

Access only on MEMCACHE_REQUEST events; otherwise, an error will occur.
reqSize: Number

The number of L7 request bytes, excluding Memcache headers. The value is NaN for requests with
no payload, such as GET and DELETE.

reqZeroWnd: Number
The number of zero windows in the request.

roundTripTime: Number
The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last MEMCACHE_REQUEST
or MEMCACHE_RESPONSE event ran. The value is NaN if there are no RTT samples.

rspBytes: Number
The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

rspL2Bytes: Number
The number of L2 response bytes, including protocol overhead, such as headers.

rspPkts: Number
The number of response packets.

rspRTO: Number
The number of response retransmission timeouts (RTOs).

Access only on MEMCACHE_RESPONSE events; otherwise, an error will occur.
rspZeroWnd: Number

The number of zero windows in the response.
statusCode: String

The Memcache status code. For the binary protocol, the ExtraHop system metrics prepend the
method to status codes other than NO_ERROR, but the statusCode property does not. Refer to the
examples for code that matches the behavior of the ExtraHop system metrics.

Access only on MEMCACHE_RESPONSE events; otherwise, an error will occur.
vbucket: Number

The Memcache vbucket, if available (binary protocol only).

Trigger Examples

• Example: Record Memcache hits and misses
• Example: Parse memcache keys

Modbus

The Modbus class enables you to access properties from MODBUS_REQUEST and MODBUS_RESPONSE
events. Modbus is a serial communications protocol that enables connections between multiple devices on
the same network.

Events
MODBUS_REQUEST

Runs on every request sent by a Modbus client. A Modbus client in the ExtraHop system is the
Modbus master device.

ExtraHop 25.2 Trigger API Reference 155

MODBUS_RESPONSE

Runs on every response sent by a Modbus server. A Modbus server in the ExtraHop system is the
Modbus slave device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on a MODBUS_RESPONSE event. Record commits on
MODBUS_REQUEST events are not supported.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
error: String

The detailed error message recorded by the ExtraHop system.

Access only on MODBUS_RESPONSE events; otherwise, an error will occur.
functionId: Number

The Modbus function code contained in the request or response.

Function ID Function name

1 Read Coil

2 Read Discrete Inputs

3 Read Holding Registers

4 Read Input Registers

5 Write Single Coil

6 Write Single Holding Register

15 Write Multiple Coils

16 Write Multiple Holding Registers

functionName: String
The name of the Modbus function code contained in the request or response.

isReqAborted: Boolean
The value is true if the connection is closed before the request was complete.

isRspAborted: Boolean
The value is true if the connection is closed before the response was complete.

Access only on MODBUS_RESPONSE events; otherwise, an error will occur.
payload: Buffer

The Buffer object containing the body of the request or response.
payloadOffset: Number

The file offset, expressed in bytes, within the resource property. The payload property is obtained
from the resource property at the offset.

processingTime: Number
The processing time of the Modbus server, expressed in milliseconds. The value is NaN on malformed
and aborted responses or if the timing is invalid.

ExtraHop 25.2 Trigger API Reference 156

Access only on MODBUS_RESPONSE events; otherwise, an error will occur.
record: Object

The record object that can be sent to the configured recordstore through a call to
Modbus.commitRecord on a MODBUS_RESPONSE event.

The default record object can contain the following properties:

• clientIsExternal

• error

• functionId

• functionName

• protocolId

• reqL2Bytes

• rspL2Bytes

• receiverIsExternal

• reqPkts

• rspPkts

• reqBytes

• rspBytes

• reqRTO

• rspRTO

• roundTripTime

• clientZeroWnd

• senderIsExternal

• serverIsExternal

• serverZeroWnd

• statusCode

• txId

• unitId

Access only on MODBUS_RESPONSE events; otherwise, an error will occur.
reqBytes: Number

The number of L4 request bytes, excluding L4 headers.

Access only on MODBUS_RESPONSE events; otherwise, an error will occur.
reqL2Bytes: Number

The number of L2 request bytes, including L2 headers.

Access only on MODBUS_RESPONSE events; otherwise, an error will occur.
reqPkts: Number

The number of packets in the request.

Access only on MODBUS_RESPONSE events; otherwise, an error will occur.
reqRTO: Number

The number of retransmission timeouts (RTOs) in the request.

Access only on MODBUS_RESPONSE events; otherwise, an error will occur.
reqSize: Number

The number of L7 request bytes, excluding Modbus headers.
reqTransferTime: Number

The transfer time of the request, expressed in milliseconds. If the request is contained in a single
packet, the transfer time is zero. If the request spans multiple packets, the value is the amount of
time between detection of the first request packet and detection of the last packet by the ExtraHop

ExtraHop 25.2 Trigger API Reference 157

system. A high value might indicate a large request or a network delay. The value is NaN if there is no
valid measurement, or if the timing is invalid.

reqZeroWnd: Number
The number of zero windows in the request.

Access only on MODBUS_RESPONSE events; otherwise, an error will occur.
roundTripTime: Number

The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last MODBUS_RESPONSE
event ran. The value is NaN if there are no RTT samples.

Access only on MODBUS_RESPONSE events; otherwise, an error will occur.
rspBytes: Number

The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

rspL2Bytes: Number
The number of L2 response bytes, including protocol overhead, such as headers.

Access only on MODBUS_RESPONSE events; otherwise, an error will occur.
rspPkts: Number

The number of packets in the response.

Access only on MODBUS_RESPONSE events; otherwise, an error will occur.
rspRTO: Number

The number of retransmission timeouts (RTOs) in the response.

Access only on MODBUS_RESPONSE events; otherwise, an error will occur.
rspSize: Number

The number of L7 response bytes, excluding Modbus protocol headers.

Access only on MODBUS_RESPONSE events; otherwise, an error will occur.
rspTransferTime: Number

The transfer time of the response, expressed in milliseconds. If the response is contained in a single
packet, the transfer time is zero. If the response spans multiple packets, the value is the amount
of time between detection of the first response packet and detection of the last packet by the
ExtraHop system. A high value might indicate a large response or a network delay. The value is NaN
if there is no valid measurement, or if the timing is invalid.

Access only on MODBUS_RESPONSE events; otherwise, an error will occur.
rspZeroWnd: Number

The number of zero windows in the response.

Access only on MODBUS_RESPONSE events; otherwise, an error will occur.
statusCode: Number

The numeric status code of the response.

Status code number Status description

1 Illegal Function

2 Illegal Data Address

3 Illegal Data Value

4 Slave Device Failure

ExtraHop 25.2 Trigger API Reference 158

Status code number Status description

5 Acknowledge

6 Slave Device Busy

7 Negative Acknowledge

8 Memory Parity Error

10 Gateway Path Unavailable

11 Gateway Target Device Failed to Respond

Access only on MODBUS_RESPONSE events; otherwise, an error will occur.
txId: Number

The transaction identifier of the request or response.
unitId: Number

The unit identifier of the Modbus server responding to the Modbus client.

MongoDB

The MongoDB class enables you to store metrics and access properties on MONGODB_REQUEST and
MONGODB_RESPONSE events.

Events
MONGODB_REQUEST

Runs on every MongoDB request processed by the device.
MONGODB_RESPONSE

Runs on every MongoDB response processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on either a MONGODB_REQUEST or
MONGODB_RESPONSE event.

The event determines which properties are committed to the record object. To view the default
properties committed for each event, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
collection: String

The name of the database collection specified in the current request.
database: String

The MongoDB database instance. In some cases, such as when login events are encrypted, the
database name is not available.

error: String
The detailed error message recorded by the ExtraHop system.

Access only on MONGODB_RESPONSE events; otherwise, an error will occur.
isReqAborted: Boolean

The value is true if the connection is closed before the MongoDB request was complete.

ExtraHop 25.2 Trigger API Reference 159

isReqTruncated: Boolean
The value is true if the request document(s) size is greater than the maximum payload document
size.

isRspAborted: Boolean
The value is true if the connection is closed before the MongoDB response was complete.

Access only on MONGODB_RESPONSE events; otherwise, an error will occur.
method: String

The MongoDB database method (appears under Methods in the user interface).
opcode: String

The MongoDB operational code on the wire protocol, which might differ from the MongoDB
method used.

processingTime: Number
The time to process the request, expressed in milliseconds (equivalent to rspTimeToFirstByte
- reqTimeToLastByte). The value is NaN on malformed and aborted responses or if the timing is
invalid.

Access only on MONGODB_RESPONSE events; otherwise, an error will occur.
record: Object

The record object that can be sent to the configured recordstore through a call to
MongoDB.commitRecord() on either a MONGODB_REQUEST or MONGODB_RESPONSE event.

The event on which the method was called determines which properties the default record object
can contain as displayed in the following table:

MONGODB_REQUEST MONGODB_RESPONSE

clientIsExternal clientIsExternal

clientZeroWnd clientZeroWnd

collection collection

database database

isReqAborted error

isReqTruncated isRspAborted

method method

opcode opcode

receiverIsExternal processingTime

reqBytes receiverIsExternal

reqL2Bytes roundTripTime

reqPkts rspBytes

reqRTO rspL2Bytes

reqSize rspPkts

reqTimeToLastByte rspRTO

senderIsExternal rspSize

serverIsExternal rspTimeToFirstByte

serverZeroWnd rspTimeToLastByte

ExtraHop 25.2 Trigger API Reference 160

MONGODB_REQUEST MONGODB_RESPONSE

user senderIsExternal

serverIsExternal

serverZeroWnd

user

reqBytes: Number
The number of L4 request bytes, excluding L4 headers.

reqL2Bytes: Number
The number of L2 request bytes, including L2 headers.

reqPkts: Number
The number of request packets.

reqRTO: Number
The number of request retransmission timeouts (RTOs).

reqSize: Number
The number of L7 request bytes, excluding MongoDB headers.

reqTimeToLastByte: Number
The time from the first byte of the request until the last byte of the request, expressed in
milliseconds.

reqZeroWnd: Number
The number of zero windows in the request.

request: Array
An array of JS objects parsed from MongoDB request payload documents. Total document size is
limited to 4K.

If BSON documents are truncated, isReqTruncated flag is set. Truncated values are represented
as follows:

• Primitive string values like code, code with scope, and binary data are partially extracted.
• Objects and Arrays are partially extracted.
• All other primitive values like Numbers, Dates, RegExp, etc., are substituted with null.

If no documents are included in the request, an empty array is returned.

The value of the request property is the same when accessed on either the MONGODB_REQUEST or
the MONGODB_RESPONSE event.

roundTripTime: Number
The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last MONGODB_REQUEST or
MONGODB_RESPONSE event ran. The value is NaN if there are no RTT samples.

rspBytes: Number
The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

rspL2Bytes: Number
The number of L2 response bytes, including protocol overhead, such as headers.

rspPkts: Number
The number of response packets.

ExtraHop 25.2 Trigger API Reference 161

rspRTO: Number
The number of response retransmission timeouts (RTOs).

rspSize: Number
The number of L7 response bytes, excluding MongoDB headers.

Access only on MONGODB_RESPONSE events; otherwise, an error will occur.
rspTimeToFirstByte: Number

The time from the first byte of the request until the first byte of the response, expressed in
milliseconds. The value is NaN on malformed and aborted responses, or if the timing is invalid.

Access only on MONGODB_RESPONSE events; otherwise, an error will occur.
rspTimeToLastByte: Number

The time from the first byte of the request until the last by of the response, expressed in
milliseconds. The value is NaN on malformed and aborted responses, or if the timing is invalid.

Access only on MONGODB_RESPONSE events; otherwise, an error will occur.
rspZeroWnd: Number

The number of zero windows in the response.
user: String

The user name, if available. In some cases, such as when login events are encrypted, the user name is
not available.

MSMQ

The MSMQ class enables you to store metrics and access properties on MSMQ_MESSAGE events.

Events
MSMQ_MESSAGE

Runs on every MSMQ user message processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on an MSMQ_MESSAGE event.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
adminQueue: String

The name of the administration queue of the message.
correlationId: Buffer

The application-generated correlation ID of the message.
dstQueueMgr: String

The destination message broker of the message.
isEncrypted: Boolean

The value is true if the payload is encrypted.
label: String

The label or description of the message.

ExtraHop 25.2 Trigger API Reference 162

msgClass: String
The message class of the message. The following values are valid:

• MQMSG_CLASS_NORMAL

• MQMSG_CLASS_ACK_REACH_QUEUE

• MQMSG_CLASS_NACK_ACCESS_DENIED

• MQMSG_CLASS_NACK_BAD_DST_Q

• MQMSG_CLASS_NACK_BAD_ENCRYPTION

• MQMSG_CLASS_NACK_BAD_SIGNATURE

• MQMSG_CLASS_NACK_COULD_NOT_ENCRYPT

• MQMSG_CLASS_NACK_HOP_COUNT_EXCEEDED

• MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_MSG

• MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_Q

• MQMSG_CLASS_NACK_PURGED

• MQMSG_CLASS_NACK_Q_EXCEEDED_QUOTA

• MQMSG_CLASS_NACK_REACH_QUEUE_TIMEOUT

• MQMSG_CLASS_NACK_SOURCE_COMPUTER_GUID_CHANGED

• MQMSG_CLASS_NACK_UNSUPPORTED_CRYPTO_PROVIDER

• MQMSG_CLASS_ACK_RECEIVE

• MQMSG_CLASS_NACK_Q_DELETED

• MQMSG_CLASS_NACK_Q_PURGED

• MQMSG_CLASS_NACK_RECEIVE_TIMEOUT

• MQMSG_CLASS_NACK_RECEIVE_TIMEOUT_AT_SENDER

• MQMSG_CLASS_REPORT

msgId: Number
The MSMQ message id of the message.

payload: Buffer
The body of the MSMQ message.

priority: Number
The priority of the message. This can be a number between 0 and 7.

queue: String
The name of the destination queue of the message.

receiverBytes: Number
The number of L4 receiver bytes.

receiverL2Bytes: Number
The number of L2 receiver bytes.

receiverPkts: Number
The number of receiver packets.

receiverRTO: Number
The number of retransmission timeouts (RTOs) from the receiver.

receiverZeroWnd: Number
The number of zero windows sent by the receiver.

record: Object
The record object that can be sent to the configured recordstore through a call to
MSMQ.commitRecord() on an MSMQ_MESSAGE event.

The default record object can contain the following properties:

• adminQueue

ExtraHop 25.2 Trigger API Reference 163

• clientIsExternal

• dstQueueMgr

• isEncrypted

• label

• msgClass

• msgId

• priority

• queue

• receiverBytes

• receiverIsExternal

• receiverL2Bytes

• receiverPkts

• receiverRTO

• receiverZeroWnd

• responseQueue

• roundTripTime

• senderBytes

• senderIsExternal

• serverIsExternal

• senderL2Bytes

• senderPkts

• senderRTO

• serverZeroWnd

• srcQueueMgr

responseQueue: String
The name of the response queue of the message.

roundTripTime: Number
The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last MSMQ_MESSAGE event
ran. The value is NaN if there are no RTT samples.

senderBytes: Number
The number of sender L4 bytes.

senderL2Bytes: Number
The number of sender L2 bytes.

senderPkts: Number
The number of sender packets.

senderRTO: Number
The number of retransmission timeouts (RTOs) from the sender.

senderZeroWnd: Number
The number of zero windows sent by the sender.

srcQueueMgr: String
The source message broker of the message.

NetFlow

The NetFlow class object enables you to store metrics and access properties on NETFLOW_RECORD events.

ExtraHop 25.2 Trigger API Reference 164

Events
NETFLOW_RECORD

Runs upon receipt of a flow record from a flow network.

Methods
commitRecord(): void

Sends a record to the configured recordstore on a NETFLOW_RECORD event.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

findField(field: Number, enterpriseId: Number): String | Number | IPAddress | Buffer
| Boolean

Searches the NetFlow record and returns the specified field. Returns a null value if the field is not in
the record. If the optional enterpriseId argument is included, the specified field is returned only if
the enterprise ID is a match, otherwise the method returns a null value.

hasField(field: Number): Boolean
Determines whether the specified field is in the NetFlow record.

Properties
age: Number

The amount of time elapsed, expressed in seconds, between the first and last property values
reported in the NetFlow record.

deltaBytes: Number
The number of L3 bytes in the flow since the last NETFLOW_RECORD event.

deltaPkts: Number
The number of packets in the flow since the last NETFLOW_RECORD event.

dscp: Number
The number representing the last differentiated services code point (DSCP) value of the flow packet.

dscpName: String
The name associated with the DSCP value of the flow packet. The following table displays well-
known DSCP names:

Number Name

8 CS1

10 AF11

12 AF12

14 AF13

16 CS2

18 AF21

20 AF22

22 AF23

24 CS3

26 AF31

28 AF32

ExtraHop 25.2 Trigger API Reference 165

Number Name

30 AF33

32 CS4

34 AF41

36 AF42

38 AF43

40 CS5

44 VA

46 EF

48 CS6

56 CS7

egressInterface: FlowInterface
The FlowInterface object that identifies the output device.

fields: Array
An array of objects that contain information fields found in the flow packets. Each object can contain
the following properties:
fieldID: Number

The ID number that represents the field type.
enterpriseID: Number

The ID number that represents enterprise-specific information.
first: Number

The amount of time elapsed, expressed in milliseconds, since the epoch of the first packet in the
flow.

format: String
The format of the NetFlow record. Valid values are NetFlow v5, NetFlow v9, and IPFIX.

ingressInterface: FlowInterface
The FlowInterface object that identifies the input device.

ipPrecedence: Number
The value of the IP precedence field associated with the DSCP of the flow packet.

ipproto: String
The IP protocol associated with the flow, such as TCP or UDP.

last: Number
The amount of time elapsed, expressed in milliseconds, since the epoch of the last packet in the flow.

network: FlowNetwork
An object that identifies the FlowNetwork and contains the following properties:
id: String

The identifier of the FlowNetwork.
ipaddr: IPAddress

The IP address of the FlowNetwork.
nextHop: IPAddress

The IP address of the next hop router.

ExtraHop 25.2 Trigger API Reference 166

observationDomain: Number
The ID of the observation domain for the template.

receiver: Object
An object that identifies the receiver and contains the following properties:
asn: Number

The autonomous system number (ASN) of the destination device.
ipaddr: IPAddress

The IP address of the destination device.
prefixLength: Number

The number of bits in the prefix of the destination address.
port: Number

The TCP or UDP port number of the destination device.
record: Object

The record object that can be sent to the configured recordstore through a call to
NetFlow.commitRecord() on a NETFLOW_RECORD event.

The default record object can contain the following properties:

• age
• clientIsExternal
• dscpName
• deltaBytes
• deltaPkts
• egressInterface
• first
• format
• ingressInterface
• last
• network
• networkAddr
• nextHop
• proto
• receiverAddr
• receiverAsn
• receiverIsExternal
• receiverPort
• receiverPrefixLength
• senderAddr
• senderAsn
• senderIsExternal
• serverIsExternal
• senderPort
• senderPrefixLength
• tcpFlagName
• tcpFlags

sender: Object
An object that identifies the sender and contains the following properties:
asn: Number

The autonomous system number (ASN) of the source device.

ExtraHop 25.2 Trigger API Reference 167

ipaddr: IPAddress
The IP address of the source device.

prefixLength: Number
The number of bits in the prefix of the source address.

port: Number
The TCP or UDP port number of the source device.

tcpFlagNames: Array
A string array of TCP flag names, such as SYN or ACK, found in the flow packets.

tcpFlags: Number
The bitwise OR of all TCP flags set on the flow.

templateId: Number
The ID of the template that is referred to by the record. Template IDs are applicable only to IPFIX
and NetFlow v9 records.

tos: Number
The type of service (ToS) number defined in the IP header.

NFS

The NFS class enables you to store metrics and access properties on NFS_REQUEST and NFS_RESPONSE
events.

Events
NFS_REQUEST

Runs on every NFS request processed by the device.
NFS_RESPONSE

Runs on every NFS response processed by the device.

Note: The NFS_RESPONSE event runs after every NFS_REQUEST event, even if the
corresponding response is never observed by the ExtraHop system.

Methods
commitRecord(): void

Sends a record to the configured recordstore on an NFS_RESPONSE event. Record commits on
NFS_REQUEST events are not supported.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
accessTime: Number

The amount of time taken by the server to access a file on disk, expressed in milliseconds. For NFS,
it is the time from every non-pipelined READ and WRITE command in an NFS flow until the payload
containing the response is recorded by the ExtraHop system. The value is NaN on malformed and
aborted responses, or if the timing is invalid or is not applicable.

Access only on NFS_RESPONSE events; otherwise, an error will occur.
authMethod: String

The method for authenticating users.

ExtraHop 25.2 Trigger API Reference 168

error: String
The detailed error message recorded by the ExtraHop system.

Access only on NFS_RESPONSE events; otherwise, an error will occur.
fileHandle: Buffer

The file handle returned by the server on LOOKUP, CREATE, SYMLINK, MKNOD, LINK, or
READDIRPLUS operations.

isCommandFileInfo: Boolean
The value is true for file info commands.

isCommandRead: Boolean
The value is true for READ commands.

isCommandWrite: Boolean
The value is true for WRITE commands.

isRspAborted: Boolean
The value is true if the connection is closed before the response was complete.

Access only on NFS_RESPONSE events; otherwise, an error will occur.
method: String

The NFS method. Valid methods are listed under the NFS metric in the ExtraHop system.
offset: Number

The file offset associated with NFS READ and WRITE commands.

Access only on NFS_REQUEST events; otherwise, an error will occur.
processingTime: Number

The server processing time, expressed in milliseconds. The value is NaN on malformed and aborted
responses or if the timing is invalid.

Access only on NFS_RESPONSE events; otherwise, an error will occur.
record: Object

The record object that can be sent to the configured recordstore through a call to
NFS.commitRecord() on a NFS_RESPONSE event.

The default record object can contain the following properties:

• accessTime

• authMethod

• clientIsExternal

• clientZeroWnd

• error

• isCommandFileInfo

• isCommandRead

• isCommandWrite

• isRspAborted

• method

• offset

• processingTime

• receiverIsExternal

• renameDirChanged

• reqSize

• reqXfer

• resource

• rspSize

ExtraHop 25.2 Trigger API Reference 169

• rspXfer

• senderIsExternal

• serverIsExternal

• serverZeroWnd

• statusCode

• txID

• user

• version

Access the record object only on NFS_RESPONSE events; otherwise, an error will occur.
renameDirChanged: Boolean

The value is true if a resource rename request includes a directory move.

Access only on NFS_REQUEST events; otherwise, an error will occur.
reqBytes: Number

The number of L4 request bytes, excluding L4 headers.

Access only on NFS_RESPONSE events; otherwise, an error will occur.
reqL2Bytes: Number

The number of L2 request bytes, including L2 headers.

Access only on NFS_RESPONSE events; otherwise, an error will occur.
reqPkts: Number

The number of request packets.

Access only on NFS_RESPONSE events; otherwise, an error will occur.
reqRTO: Number

The number of request retransmission timeouts (RTOs).

Access only on NFS_REQUEST events; otherwise, an error will occur.
reqSize: Number

The number of L7 request bytes, excluding NFS headers.
reqTransferTime: Number

The request transfer time, expressed in milliseconds. If the request is contained in a single packet,
the transfer time is zero. If the request spans multiple packets, the value is the amount of time
between detection of the first NFS request packet and detection of the last packet by the ExtraHop
system. A high value might indicate a large NFS request or a network delay. The value is NaN if there
is no valid measurement, or if the timing is invalid.

Access only on NFS_REQUEST events; otherwise, an error will occur.
reqZeroWnd: Number

The number of zero windows in the request.
resource: String

The path and filename, concatenated together.
roundTripTime: Number

The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last NFS_RESPONSE event
ran. The value is NaN if there are no RTT samples.

Access only on NFS_RESPONSE events; otherwise, an error will occur.
rspBytes: Number

The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

ExtraHop 25.2 Trigger API Reference 170

Access only on NFS_RESPONSE events; otherwise, an error will occur.
rspL2Bytes: Number

The number of L2 response bytes, including protocol overhead, such as headers.

Access only on NFS_RESPONSE events; otherwise, an error will occur.
rspPkts: Number

The number of response packets.

Access only on NFS_RESPONSE events; otherwise, an error will occur.
rspRTO: Number

The number of request retransmission timeouts (RTOs).

Access only on NFS_RESPONSE events; otherwise, an error will occur.
rspSize: Number

The number of L7 response bytes, excluding NFS headers.

Access only on NFS_RESPONSE events; otherwise, an error will occur.
rspTransferTime: Number

The response transfer time, expressed in milliseconds. If the response is contained in a single
packet, the transfer time is zero. If the response spans multiple packets, the value is the amount of
time between detection of the first NFS response packet and detection of the last packet by the
ExtraHop system. A high value might indicate a large NFS response or a network delay. The value is
NaN if there is no valid measurement, or if the timing is invalid.

Access only on NFS_RESPONSE events; otherwise, an error will occur.
rspZeroWnd: Number

The number of zero windows in the response.
statusCode: String

The NFS status code of the request or response.
symlink: Buffer | null

The argument specified in an NFS SYMLINK request.

The value is null if this property is accessed on an event other than NFS_REQUEST or if the
NFS.method is not SYMLINK.

txId: Number
The transaction ID.

user: String
The ID of the Linux user, formatted as uid:xxxx.

verifierMethod: String
The method for verifying the sender of the request.

version: Number
The NFS version.

NMF
The NET Message Framing Protocol (NMF) class enables you to store metrics and access properties on
NMF_RECORD events.

Events
NMF_RECORD

Runs on every NMF record processed by the device.

ExtraHop 25.2 Trigger API Reference 171

Methods
commitRecord(): void

Sends a record to the configured recordstore on an NMF_RECORD event. To view the default
properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
envelope: Buffer

The Buffer object that contains the payload bytes of the message.
wireSize: Number

The length of the raw record as it was observed, expressed in bytes. If the record is compressed, this
property reflects the length of the compressed record.

mode: Number
The numeric code for the communication mode. The following codes are valid:

Code Description

1 Singleton-Unsized

2 Duplex

3 Simplex

4 Singleton-Sized

via: String
The URI that subsequent messages will be sent to.

version: String
The version of the NMF protocol.

NTLM

The NTLM class enables you to store metrics and access properties on NTLM_MESSAGE events.

Events
NTLM_MESSAGE

Runs on every NTLM message processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on an NTLM_MESSAGE event.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
containsMIC: Boolean

The value is true if the message includes a Message Integrity Code (MIC) that ensures that the
message has not been tampered with.

ExtraHop 25.2 Trigger API Reference 172

challenge: String
The hexadecimal-encoded challenge hash string.

domain: String
The client domain name included in the challenge hash calculation.

flags: Number
The bitwise OR of the NTLM negotiate flags. For more information, see the NTLM documentation
on the Microsoft website.

msgType: String
The type of NTLM message. The following message types are valid:

• NTLM_AUTH

• NTLM_CHALLENGE

• NTLM_NEGOTIATE

ntlm2RspAVPairs: Array
An array of objects that contain NTLM attribute-value pairs. For more information, see the NTLM
documentation on the Microsoft website.

record: Object
The record object that can be sent to the configured recordstore through a call to
NTLM.commitRecord() on a NTLM_MESSAGE event.

The default record object can contain the following properties:

• challenge

• clientIsExternal

• domain

• flags

• l7proto

• msgType

• proto

• receiverAddr

• receiverIsExternal

• receiverPort

• senderAddr

• senderIsExternal

• senderPort

• serverIsExternal

• user

• windowsVersion

• workstation

rspVersion: String
The version of NTLM implemented in the NTLM_AUTH response. The value is null for non-
authentication messages. The following versions are valid:

• LM

• NTLMv1

• NTLMv2

user: String
The client username included in the challenge hash calculation.

windowsVersion: String
The version of Windows running on the client included in the challenge hash calculation.

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/99d90ff4-957f-4c8a-80e4-5bfe5a9a9832
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/83f5e789-660d-4781-8491-5f8c6641f75e
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/83f5e789-660d-4781-8491-5f8c6641f75e

ExtraHop 25.2 Trigger API Reference 173

workstation: String
The name of the client workstation included in the challenge hash calculation.

NTP

The Network Time Protocol (NTP) class enables you to store metrics and access properties on
NTP_MESSAGE events.

Events
NTP_MESSAGE

Runs on every NTP message processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on an NTP_MESSAGE event. To view the default
properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
flags: Number

The decimal representation of the byte that contains information about the NTP flags. The leap
indicator is contained in the first two bits of the byte, the NTP version is contained in the next three
bits, and the NTP protocol operation mode is contained in the last three bits.

leapIndicator: Number
Indicates whether an extra second will be added to or removed from the last minute of the day on
the system clock. The following values are valid:

Value Description

0 An extra second will not be added or removed.

1 An extra second will be added to the last minute
of the day. The last minute will have 61 seconds.

2 An extra second will be removed from the last
minute of the day. The last minute will have 59
seconds.

3 Unknown. Clocks are not currently
synchronized.

mode: Number
The numeric ID of the NTP protocol operation mode.

modeName: String
The name of the NTP protocol operation mode. The following values are valid:

Value Numeric ID

reserved 0

symmetric active 1

symmetric passive 2

ExtraHop 25.2 Trigger API Reference 174

Value Numeric ID

client 3

server 4

broadcast 5

NTP control message 6

reserved for private use 7

originTimestamp: Number
The local time of the client when the client sent the request to the server, expressed in fractional
seconds since the NTP epoch.

payload: Buffer
The Buffer object that contains the raw payload bytes of the NTP message.

poll: Number
The maximum amount of time the system waits between NTP messages, expressed in fractional
seconds.

precision: Number
The precision of the system clock, expressed in fractional seconds.

receiveTimestamp: Number
The local time of the server when the server received the request from the client, expressed in
fractional seconds since the NTP epoch.

record: Object
The record object that can be sent to the configured recordstore through a call to
NTP.commitRecord() on an NTP_MESSAGE event.

The default record object can contain the following properties:

• application

• extensionCount

• flowId

• modeName

• originTimestamp

• poll

• precision

• receiver

• receiverAddr

• receiverIsExternal

• receiverPort

• receiveTimestamp

• referenceId

• referenceIdCode

• referenceTimestamp

• rootDelay

• stratum

• sender

• senderAddr

• senderIsExternal

• senderPort

• transmitTimestamp

ExtraHop 25.2 Trigger API Reference 175

• version

• vlan

referenceId: Number
The numerical ID of the server or reference clock.

referenceIdCode: String | Null
The string ID of the server or reference clock.

referenceTimestamp: Number
The last time the system clock was set or corrected, expressed in fractional seconds since the NTP
epoch.

rootDelay: Number
The round-trip time delay to the reference clock, expressed in seconds.

rootDispersion: Number
The maximum error relative to the reference clock, expressed in seconds.

stratum: Number
The NTP stratum of the system clock.

transmitTimestamp: Number
The local time of the server when the server sent the response to the client, expressed in fractional
seconds since the NTP epoch.

version: Number
The version of the NTP protocol.

POP3

The POP3 class enables you to store metrics and access properties on POP3_REQUEST and
POP3_RESPONSE events.

Events
POP3_REQUEST

Runs on every POP3 request processed by the device.
POP3_RESPONSE

Runs on every POP3 response processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on a POP3_RESPONSE event. Record commits on
POP3_REQUEST events are not supported.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
dataSize: Number

The size of the message, expressed in bytes.

Access only on POP3_RESPONSE events; otherwise, an error will occur.
error: String

The detailed error message recorded by the ExtraHop system.

ExtraHop 25.2 Trigger API Reference 176

Access only on POP3_RESPONSE events; otherwise, an error will occur.
isEncrypted: Boolean

The value is true if the transaction is over a secure POP3 server.
isReqAborted: Boolean

The value is true if the connection is closed before the POP3 request was complete.
isRspAborted: Boolean

The value is true if the connection is closed before the POP3 response was complete.

Access only on POP3_RESPONSE events; otherwise, an error will occur.
method: String

The POP3 method such as RETR or DELE.
processingTime: Number

The server processing time, expressed in milliseconds. The value is NaN on malformed and aborted
responses or if the timing is invalid.

Access only on POP3_RESPONSE events; otherwise, an error will occur.
recipientList: Array

An array that contains a list of recipient addresses.

Access only on POP3_RESPONSE events; otherwise, an error will occur.
record: Object

The record object that can be sent to the configured recordstore through a call to
POP3.commitRecord() on a POP3_RESPONSE event.

The default record object can contain the following properties:

• clientIsExternal

• clientZeroWnd

• dataSize

• error

• isEncrypted

• isReqAborted

• isRspAborted

• method

• processingTime

• receiverIsExternal

• recipientList

• reqSize

• reqTimeToLastByte

• rspSize

• rspTimeToFirstByte

• rspTimeToLastByte

• sender

• senderIsExternal

• serverIsExternal

• serverZeroWnd

• statusCode

Access the record object only on POP3_RESPONSE events; otherwise, an error will occur.
reqBytes: Number

The number of L4 request bytes, excluding L4 headers.

ExtraHop 25.2 Trigger API Reference 177

reqL2Bytes: Number
The number of L2 request bytes, including L2 headers.

reqPkts: Number
The number of request packets.

reqRTO: Number
The number of request retransmission timeouts (RTOs).

reqSize: Number
The number of L7 request bytes, excluding POP3 headers.

reqTimeToLastByte: Number
The time from the first byte of the request until the last byte of the request, expressed in
milliseconds. The value is NaN on expired requests and responses, or if the timing is invalid.

reqZeroWnd: Number
The number of zero windows in the request.

roundTripTime: Number
The median TCP round trip time (RTT), expressed in milliseconds. An RTT is the time it took for
a device to send a single TCP packet and receive an immediate corresponding acknowledgment
(ACK) packet. The median value is calculated by sampling the RTTs observed since the last
POP3_RESPONSE event ran. The value is NaN if there are no RTT samples.

Access only on POP3_RESPONSE events; otherwise, an error will occur.
rspBytes: Number

The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

Access only on POP3_RESPONSE events; otherwise, an error will occur.
rspL2Bytes: Number

The number of L2 response bytes, including protocol overhead, such as headers.

Access only on POP3_RESPONSE events; otherwise, an error will occur.
rspPkts: Number

The number of response packets.

Access only on POP3_RESPONSE events; otherwise, an error will occur.
rspRTO: Number

The number of response retransmission timeouts (RTOs).

Access only on POP3_RESPONSE events; otherwise, an error will occur.
rspSize: Number

The number of L7 response bytes, excluding POP3 headers.

Access only on POP3_RESPONSE events; otherwise, an error will occur.
rspTimeToFirstByte: Number

The time from the first byte of the request until the furst byte of the response, expressed in
milliseconds. The value is NaN on malformed and aborted responses, or if the timing is invalid.

Access only on POP3_RESPONSE events; otherwise, an error will occur.
rspTimeToLastByte: Number

The time from the first byte of the request until the last byte of the response, expressed in
milliseconds. The value is NaN on malformed and aborted responses, or if the timing is invalid.

Access only on POP3_RESPONSE events; otherwise, an error will occur.
rspZeroWnd: Number

The number of zero windows in the response.

ExtraHop 25.2 Trigger API Reference 178

sender: String
The address of the sender of the message.

Access only on POP3_RESPONSE events; otherwise, an error will occur.
status: String

The POP3 status message of the response which can be OK, ERR or NULL.

Access only on POP3_RESPONSE events; otherwise, an error will occur.

QUIC

The QUIC class enables you to store metrics and access properties on QUIC_OPEN and QUIC_CLOSE
events.

Events
QUIC_CLOSE

Runs when a QUIC connection is closed.
QUIC_OPEN

Runs when a QUIC connection is opened.

Methods
commitRecord(): void

Sends a record to the configured recordstore on either a QUIC_OPEN or QUIC_CLOSE event. To
view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
record: Object

The record object that can be sent to the configured recordstore through a call to
QUIC.commitRecord() on either a QUIC_OPEN or QUIC_CLOSE event.

The default record object can contain the following properties:

• clientAddr

• clientIsExternal

• clientPort

• proto

• receiverIsExternal

• senderIsExternal

• serverAddr

• serverIsExternal

• serverPort

• sni

• version

• vlan

sni: String
The Server Name Indication (SNI), which identifies the name of the server the client is connecting to.

version: String
The version of the QUIC protocol.

ExtraHop 25.2 Trigger API Reference 179

RDP

RDP (Remote Desktop Protocol) is a proprietary protocol created by Microsoft that enables a Windows
computer to connect to another Windows computer on the same network or over the Internet. The RDP
class enables you to store metrics and access properties on RDP_OPEN, RDP_CLOSE, or RDP_TICK events.

Events
RDP_CLOSE

Runs when an RDP connection is closed.
RDP_OPEN

Runs when a new RDP connection is opened.
RDP_TICK

Runs periodically while the user interacts with the RDP application.

Methods
commitRecord(): void

Sends a record to the configured recordstore on an RDP_OPEN, RDP_CLOSE, or RDP_TICK event.

The event determines which properties are committed to the record object. To view the default
properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
clientBuild: String

The build number of the RDP client. This property is not available if the RDP connection is
encrypted.

clientName: String
The name of the client computer. This property is not available if the RDP connection is encrypted.

cookie: String
The auto-connect cookie stored by the RDP client.

desktopHeight: Number
The height of the desktop, expressed in pixels. This property is not available if the RDP connection is
encrypted.

desktopWidth: Number
The width of the desktop, expressed in pixels. This property is not available if the RDP connection is
encrypted.

encryptionProtocol: String
The protocol that the transaction is encrypted with.

error: String
The detailed error message recorded by the ExtraHop system.

isDecrypted: Boolean
The value is true if the ExtraHop system securely decrypted and analyzed the transaction. Decrypted
traffic analysis can expose advanced threats that hide within encrypted traffic.

isEncrypted: Boolean
The value is true if the RDP connection is encrypted.

ExtraHop 25.2 Trigger API Reference 180

isError: Boolean
The value is true if an error occurred on the event.

keyboardLayout: String
The keyboard layout, which indicates the arrangement of keys and the input language. This property
is not available if the RDP connection is encrypted.

record: Object
The record object that can be sent to the configured recordstore through a call to
RDP.commitRecord() on either an RDP_OPEN, RDP_CLOSE, or RDP_TICK event.

The default record object can contain the following properties:

RDP_OPEN and RDP_CLOSE RDP_TICK

clientBuild clientBuild

clientIsExternal clientBytes

clientName clientIsExternal

cookie clientL2Bytes

desktopHeight clientName

desktopWidth clientPkts

error clientRTO

isEncrypted clientZeroWnd

keyboardLayout cookie

receiverIsExternal desktopHeight

requestedColorDepth desktopWidth

requestedProtocols error

selectedProtocol isEncrypted

senderIsExternal keyboardLayout

serverIsExternal receiverIsExternal

requestedColorDepth

requestedProtocols

roundTripTime

selectedProtocol

senderIsExternal

serverBytes

serverIsExternal

serverL2Bytes

serverPkts

serverRTO

serverZeroWnd

ExtraHop 25.2 Trigger API Reference 181

requestedColorDepth: String
The color depth requested by the RDP client. This property is not available if the RDP connection is
encrypted.

requestedProtocols: Array of Strings
The list of supported security protocols.

reqBytes: Number
The number of L4 bytes in the request.

Access only on RDP_TICK events; otherwise, an error will occur.
reqL2Bytes: Number

The number of L2 bytes in the request.

Access only on RDP_TICK events; otherwise, an error will occur.
reqPkts: Number

The number of packets in the request.

Access only on RDP_TICK events; otherwise, an error will occur.
reqRTO: Number

The number of retransmission timeouts (RTOs) in the request.

Access only on RDP_TICK events; otherwise, an error will occur.
reqZeroWnd: Number

The number of zero windows in the request.

Access only on RDP_TICK events; otherwise, an error will occur.
roundTripTime: Number

The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last RDP_TICK event ran.
The value is NaN if there are no RTT samples.

Access only on RDP_TICK events; otherwise, an error will occur.
rspBytes: Number

The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

Access only on RDP_TICK events; otherwise, an error will occur.
rspL2Bytes: Number

The number of L2 response bytes, including protocol overhead, such as headers.

Access only on RDP_TICK events; otherwise, an error will occur.
rspPkts: Number

The number of packets in the response.

Access only on RDP_TICK events; otherwise, an error will occur.
rspRTO: Number

The number of retransmission timeouts (RTOs) in the response.

Access only on RDP_TICK events; otherwise, an error will occur.
rspZeroWnd: Number

The number of zero windows in the response.

Access only on RDP_TICK events; otherwise, an error will occur.
selectedProtocol: String

The selected security protocol.

ExtraHop 25.2 Trigger API Reference 182

user: String
The username, if available. In some cases, such as when login events are encrypted and the sensor
has not been configured to decrypt the traffic , the username is unavailable.

Redis

Remote Dictionary Server (Redis) is an open-source, in-memory data structure server. The Redis class
enables you to store metrics and access properties on REDIS_REQUEST and REDIS_RESPONSE events.

Events
REDIS_REQUEST

Runs on every Redis request processed by the device.
REDIS_RESPONSE

Runs on every Redis response processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on either a REDIS_REQUEST or REDIS_RESPONSE
event.

The event determines which properties are committed to the record object. To view the default
properties committed for each event, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
errors: Array

An array of detailed error messages recorded by the ExtraHop system.

Access only on REDIS_RESPONSE events; otherwise, an error will occur.
isReqAborted: Boolean

The value is true if the connection is closed before the Redis request was complete.
isRspAborted: Boolean

The value is true if the connection is closed before the Redis response was complete.

Access only on REDIS_RESPONSE events; otherwise, an error will occur.
method: String

The Redis method such as GET or KEYS.
payload: Buffer

The body of the response or request.
processingTime: Number

The server processing time, expressed in milliseconds. The value is NaN on malformed and aborted
responses or if the timing is invalid.

Access only on REDIS_RESPONSE events; otherwise, an error will occur.
record: Object

The record object that can be sent to the configured recordstore through a call to
Redis.commitRecord() on either a REDIS_REQUEST or REDIS_RESPONSE event.

The event on which the method was called determines which properties the default record object
can contain as displayed in the following table:

https://docs.extrahop.com/25.2/ssl-decryption-concepts

ExtraHop 25.2 Trigger API Reference 183

REDIS_REQUEST REDIS_RESPONSE

clientIsExternal clientIsExternal

clientZeroWnd clientZeroWnd

method error

receiverIsExternal method

reqKey processingTime

reqSize receiverIsExternal

reqTransferTime reqKey

isReqAborted rspSize

senderIsExternal rspTransferTime

serverZeroWnd isRspAborted

rspTimeToFirstByte

rspTimeToLastByte

senderIsExternal

serverIsExternal

serverZeroWnd

reqKey: Array
An array containing the Redis key strings sent with the request.

reqBytes: Number
The number of L4 request bytes, excluding L4 headers.

reqL2Bytes: Number
The number of L2 request bytes, including L2 headers.

reqPkts: Number
The number of request packets.

reqRTO: Number
The number of request retransmission timeouts (RTOs).

reqSize: Number
The number of L7 request bytes, excluding Redis headers.

reqTransferTime: Number
The request transfer time, expressed in milliseconds. If the request is contained in a single packet,
the transfer time is zero. If the request spans multiple packets, the value is the amount of time
between detection of the first Redis request packet and detection of the last packet by the ExtraHop
system. A high value might indicate a large Redis request or a network delay. The value is NaN if
there is no valid measurement, or if the timing is invalid.

reqZeroWnd: Number
The number of zero windows in the request.

roundTripTime: Number
The median TCP round trip time (RTT), expressed in milliseconds. An RTT is the time it took for
a device to send a single TCP packet and receive an immediate corresponding acknowledgment
(ACK) packet. The median value is calculated by sampling the RTTs observed since the last
REDIS_REQUEST or REDIS_RESPONSE event ran. The value is NaN if there are no RTT samples.

ExtraHop 25.2 Trigger API Reference 184

rspBytes: Number
The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

rspL2Bytes: Number
The number of L2 response bytes, including protocol overhead, such as headers.

rspPkts: Number
The number of response packets.

rspRTO: Number
The number of response retransmission timeouts (RTOs).

rspTransferTime: Number
The response transfer time, expressed in milliseconds. If the response is contained in a single
packet, the transfer time is zero. If the response spans multiple packets, the value is the amount of
time between detection of the first Redis response packet and detection of the last packet by the
ExtraHop system. A high value might indicate a large Redis response or a network delay. The value is
NaN if there is no valid measurement, or if the timing is invalid.

Access only on REDIS_RESPONSE events; otherwise, an error will occur.
rspSize: Number

The number of L7 response bytes, excluding Redis headers.

Access only on REDIS_RESPONSE events; otherwise, an error will occur.
rspTimeToFirstByte: Number

The time from the first byte of the request until the furst byte of the response, expressed in
milliseconds. The value is NaN on malformed and aborted responses, or if the timing is invalid.

Access only on REDIS_RESPONSE events; otherwise, an error will occur.
rspTimeToLastByte: Number

The time from the first byte of the request until the last byte of the response, expressed in
milliseconds. The value is NaN on malformed and aborted responses, or if the timing is invalid.

Access only on REDIS_RESPONSE events; otherwise, an error will occur.
rspZeroWnd: Number

The number of zero windows in the response.

RFB

The RFB class enables you to store metrics and access properties on RFB_OPEN, RFB_CLOSE, and
RFB_TICK events.

Events
RFB_CLOSE

Runs when an RFB connection is closed.
RFB_OPEN

Runs when a new RFB connection is opened.
RFB_TICK

Runs periodically on RFB flows.

ExtraHop 25.2 Trigger API Reference 185

Methods
commitRecord(): void

Commits a record object to the recordstore. To view the default properties committed to the record
object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
authType: Number

The number that corresponds to the security type negotiated by the client and server.

Access only on RFB_OPEN events; otherwise, an error will occur.

Security type Number

Invalid 0

None 1

VNC Authentication 2

RealVNC 3-15

Tight 16

Ultra 17

TLS 18

VeNCrypt 19

GTK-VNC SASL 20

MD5 hash authentication 21

Colin Dean xvp 22

RealVNC 128-255

authResult: Number
Indicates whether authentication was successful.

Value Description

0 Succeeded

1 Failed

duration: Number
The duration of the RFB session, expressed in seconds.

Access only on RFB_CLOSE events; otherwise, an error will occur.
error: String

The detailed error message recorded by the ExtraHop system.

Access only on RFB_OPEN events; otherwise, an error will occur.
record: Object

The record object committed to the recordstore through a call to RFB.commitRecord().

ExtraHop 25.2 Trigger API Reference 186

The event on which the method was called determines which properties the default record object
can contain as displayed in the following table:

RFB_OPEN RFB_TICK RFB_CLOSE

authType clientIsExternal clientIsExternal

authResult reqBytes duration

clientIsExternal receiverIsExternal receiverIsExternal

error reqL2Bytes senderIsExternal

receiverIsExternal reqPkts serverIsExternal

senderIsExternal reqRTO

serverIsExternal reqZeroWnd

version roundTripTime

rspBytes

rspL2Bytes

rspPkts

rspRTO

rspZeroWnd

senderIsExternal

serverIsExternal

reqBytes: Number
The number of L4 request bytes, excluding L4 headers.

Access only on RFB_TICK events; otherwise, an error will occur.
reqL2Bytes: Number

The number of L2 request bytes, including L2 headers.

Access only on RFB_TICK events; otherwise, an error will occur.
reqPkts: Number

The number of request packets.

Access only on RFB_TICK events; otherwise, an error will occur.
reqRTO: Number

The number of request retransmission timeouts (RTOs).

Access only on RFB_TICK events; otherwise, an error will occur.
reqZeroWnd: Number

The number of zero windows in the request.

Access only on RFB_TICK events; otherwise, an error will occur.
roundTripTime: Number

The median TCP round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a
device to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK)
packet. The median value is calculated by sampling the RTTs observed since the last RFB_TICK
event ran. The value is NaN if there are no RTT samples.

Access only on RFB_TICK events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 187

rspBytes: Number
The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

Access only on RFB_TICK events; otherwise, an error will occur.
rspL2Bytes: Number

The number of L2 response bytes, including protocol overhead, such as headers.

Access only on RFB_TICK events; otherwise, an error will occur.
rspPkts: Number

The number of response packets.

Access only on RFB_TICK events; otherwise, an error will occur.
rspRTO: Number

The number of response retransmission timeouts (RTOs).

Access only on RFB_TICK events; otherwise, an error will occur.
rspZeroWnd: Number

The number of zero windows in the response.

Access only on RFB_TICK events; otherwise, an error will occur.
version: String

The version of the RFB protocol negotiated by the client and server.

Access only on RFB_OPEN events; otherwise, an error will occur.

RPC

The RPC class enables you to store metrics and access properties from Microsoft Remote Procedure Call
(MSRPC) activity on RPC_REQUEST and RPC_RESPONSE events.

Events
RPC_REQUEST

Runs on every RPC request processed by the device.
RPC_RESPONSE

Runs on every RPC response processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on an RPC_REQUEST or RPC_RESPONSE event.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
authType: String

The security type negotiated by the client and server. The following types are valid:

• DIGEST

• DPA

• GSS_KERBEROS

• GSS_SCHANNEL

ExtraHop 25.2 Trigger API Reference 188

• KRB5

• MSN

• MQ

• NONE

• NTLMSSP

• SEC_CHAN

• SPNEGO

Access only on RPC_RESPONSE events; otherwise, an error will occur.
commandLine: String | Null

The full command line specified in the RPC request for the following operations:

Interface Operation

Service Control Manager • RCreateServiceW

• RCreateServiceA

• RCreateServiceWOW64A

• RCreateServiceWOW64W

IWbemServices • ExecMethod

• ExecMethodAsync

IDispatch • Invoke

ITaskSchedulerService • RegisterTask

If the operation is not included in the table above, or the request did not specify a command line, the
value is null.

encryptionProtocol: String
The protocol that the transaction is encrypted with.

interface: String
The name of the RPC interface, such as drsuapi and epmapper.

interfaceGUID: String
The GUID of the RPC interface. The format of the GUID includes hyphens, as shown in the following
example:

367abb81-9844-35f2-ad32-98f038001004

isEncrypted: Boolean
The value is true if the payload is encrypted.

isDecrypted: Boolean
The value is true if the ExtraHop system securely decrypted and analyzed the transaction. Decrypted
traffic analysis can expose advanced threats that hide within encrypted traffic.

isNDR64: Boolean | null
Indicates whether the request or response was transmitted with the NDR64 transfer syntax. If the
pduType property is not request or response, the value is null.

operation: String
The name of the RPC operation, such as DRSGetNCChanges and ept_map.

opnum: Number
The opnum of the RPC operation. The opnum is the numerical ID of the RPC operation.

ExtraHop 25.2 Trigger API Reference 189

payload: Buffer | null
The Buffer object containing the body of the request or response. If the pduType property is not
request or response, the value is null.

pduType: String
The PDU type, which indicates the purpose of the RPC message. The following values are valid:

• ack

• alter_context

• alter_context_resp

• auth

• bind

• bind_ack

• bind_nak

• cancel_ack

• cl_cancel

• co_cancel

• fack

• fault

• nocall

• orphaned

• ping

• response

• request

• reject

• shutdown

• working

record: Object
The record object that can be sent to the configured recordstore through a call to
RPC.commitRecord() on an RPC_REQUEST or RPC_RESPONSE event.

The default record object can contain the following properties:

• clientAddr

• clientBytes

• clientIsExternal

• clientL2Bytes

• clientPkts

• clientPort

• clientRTO

• clientZeroWnd

• interface

• operation

• proto

• receiverIsExternal

• roundTripTime

• senderIsExternal

• serverAddr

• serverBytes

• serverIsExternal

• serverL2Bytes

• serverPkts

ExtraHop 25.2 Trigger API Reference 190

• serverPort

• serverRTO

• serverZeroWnd

• user

registryKey: String | Null
The Windows registry key specified in the RPC request for the following operations:

Interface Operation

WinReg • BaseRegCloseKey

• BaseRegCreateKey

• BaseRegOpenKey

• BaseRegQueryValue

• BaseRegSetValue

If the operation is not included in the table above, or the request did not specify a registry key, the
value is null.

reqBytes: Number
The number of L4 request bytes, excluding L4 headers.

reqL2Bytes: Number
The number of L2 request bytes, including L2 headers.

reqPkts: Number
The number of request packets.

reqRTO: Number
The number of request retransmission timeouts (RTOs).

reqZeroWnd: Number
The number of zero windows in the request.

roundTripTime: Number
The median TCP round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a
device to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK)
packet. The median value is calculated by sampling the RTTs observed since the last RPC_REQUEST
or RPC_RESPONSE event ran. The value is NaN if there are no RTT samples.

rspBytes: Number
The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

rspL2Bytes: Number
The number of L2 response bytes, including protocol overhead, such as headers.

rspPkts: Number
The number of response packets.

rspRTO: Number
The number of response retransmission timeouts (RTOs).

rspZeroWnd: Number
The number of zero windows in the response.

sessionId: Number
The ID of the associated SMB session.

serviceName: String | Null
The name of the Windows service specified in the RPC request for the following operations:

ExtraHop 25.2 Trigger API Reference 191

Interface Operation

Service Control Manager • RCreateServiceW

• RCreateServiceA

• RCreateServiceWOW64A

• RCreateServiceWOW64W

If the operation is not included in the table above, or the request did not specify a service, the value
is null.

user: String
The user name, if available. In some cases, such as when login events are encrypted, the user name is
not available.

RTCP

The RTCP class enables you to store metrics and access properties on RTCP_MESSAGE events.

Events
RTCP_MESSAGE

Runs on every RTCP UDP packet processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on an RTCP_MESSAGE event.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
callId: String

The Call ID for associating with a SIP flow.
packets: Array

An array of RTCP packet objects where each object represents a packet and contains a packetType
field. Each object has different fields based on the message type, as described below.
packetType: String

The type of packet. If the packet type is not recognizable, then the packetType will be
"Unknown N" where N is the RTP control packet type value.

Value Type Name

194 SMPTETC SMPTE time-code mapping

195 IJ Extended inter-arrival jitter
report

200 SR sender report

201 RR receiver report

202 SDES source description

203 BYE goodbye

ExtraHop 25.2 Trigger API Reference 192

Value Type Name

204 APP application-defined

205 RTPFB Generic RTP Feedback

206 PSFB Payload-specific

207 XR extended report

208 AVB AVB RTCP packet

209 RSI Receiver Summary Information

210 TOKEN Port Mapping

211 IDMS IDMS Settings

The following list describes the fields for each type of packet object:

APP

name: String
The name chosen by the person defining the set of APP packets to be unique.
Interpreted as four case-sensitive ASCII characters.

ssrc: Number
The SSRC of the sender.

value: Buffer
The optional application-dependent data.

BYE

packetType: Number
Contains the number 203 to identify this as an RTCP BYE packet.

SR

ntpTimestamp: Number
The NTP timestamp, converted to milliseconds since the epoch (January 1,
1970).

reportBlocks: Array
An array of report objects which contain:
fractionLost: Number

The 8-bit number indicating the number of packets lost divided by the
number of packets expected.

jitter: Number
An estimate of the statistical variance of the RTP data packet interarrival
time, expressed in milliseconds.

lastSR: Number
The middle 32 bits of the ntp_Timestamp received as part of the most
recent RTCP sender report (SR) packet from the source SSRC. If no SR
has been received yet, this field is set to zero.

lastSRDelay: Number
The delay between receiving the last SR packet from the source SSRC
and sending this reception block, expressed in units of 1/65536 seconds.
If no SR packet has been received yet, this field is set to zero.

ExtraHop 25.2 Trigger API Reference 193

packetsLost: Number
The total number of RTP data packets from the source SSRC that have
been lost since the beginning of reception.

seqNum: Number
The highest sequence number received from the source SSRC.

ssrc: Number
The SSRC of the sender.

rtpTimestamp: Number
The RTP timestamp, converted to milliseconds since the epoch (January 1,
1970).

senderOctets: Number
The sender octet count.

senderPkts: Number
The sender packet count.

RR

reportBlocks: Array
An array of report objects which contain:
fractionLost: Number

The 8-bit number indicating the number of packets last divided by the
number of packets expected.

jitter: Number
An estimate of the statistical variance of the RTP data packet interarrival,
expressed in milliseconds.

lastSR: Number
The middle 32 bits of the ntp_Timestamp received as part of the most
recent RTCP sender report (SR) packet from the source SSRC. If no SR
has been received yet, this field is set to zero.

lastSRDelay: Number
The delay between receiving the last SR packet from the source SSRC
and sending this reception report block, expressed in units of 1/65536
seconds. If no SR packet has been received yet, this field is set to zero.

packetsLost: Number
The total number of RTP data packets from the source SSRC that have
been lost since the beginning of reception.

seqNum: Number
The highest sequence number received from the source SSRC.

ssrc: Number
The SSRC of the sender.

ssrc: Number
The SSRC of the sender.

SDES

descriptionBlocks: Array
An array of objects that contain:
type: Number

The SDES type.

ExtraHop 25.2 Trigger API Reference 194

SDES Type Abbrev. Name

0 END end of SDES list

1 CNAME canonical name

2 NAME user name

3 EMAIL user's electronic
mail address

4 PHONE user's phone number

5 LOC geographic user
location

6 TOOL name of application
or tool

7 NOTE notice about the
source

8 PRIV private extensions

9 H323-C ADDR H.323 callable
address

10 APSI Application Specific
Identifier

value: Buffer
A buffer containing the text portion of the SDES packet.

ssrc: Number
The SSRC of the sender.

XR

ssrc: Number
The SSRC of the sender.

xrBlocks: Array
An array of report blocks which contain:
statSummary: Object

Type 6 only. The statSummary object contains the following properties:
beginSeq: Number

The beginning sequence number for the interval.
devJitter: Number

The standard deviation of the relative transit time between each
two packet series in the sequence interval.

devTTLOrHL: Number
The standard deviation of TTL or Hop Limit values of data packets
in the sequence number range.

dupPackets: Number
The number of duplicate packets in the sequence number interval.

endSeq: Number
The ending sequence number for the interval.

ExtraHop 25.2 Trigger API Reference 195

lostPackets: Number
The number of lost packets in the sequence number interval.

maxJitter: Number
The maximum relative transmit time between two packets in the
sequence interval, expressed in milliseconds.

maxTTLOrHL: Number
The maximum TTL or Hop Limit value of data packets in the
sequence number range.

meanJitter: Number
The mean relative transit time between two packet series in the
sequence interval, rounded to the nearest value expressible as an
RTP timestamp, expressed in milliseconds.

meanTTLOrHL: Number
The mean TTL or Hop Limit value of data packets in the sequence
number range.

minJitter: Number
The minimum relative transmit time between two packets in the
sequence interval, expressed in milliseconds.

minTTLOrHL: Number
The minimum TTL or Hop Limit value of data packets in the
sequence number range.

ssrc: Number
The SSRC of the sender.

type: Number
The XR block type.

Block Type Name

1 Loss RTE Report Block

2 Duplicate RLE Report Block

3 Packet Receipt Times Report Block

4 Receiver Reference Time Report
Block

5 DLRR Report Block

6 Statistics Summary Report Block

7 VoIP Metrics Report Block

8 RTCP XP

9 Texas Instruments Extended VoIP
Quality Block

10 Post-repair Loss RLE Report Block

11 Multicast Acquisition Report
Block

12 IBMS Report Block

13 ECN Summary Report

ExtraHop 25.2 Trigger API Reference 196

Block Type Name

14 Measurement Information Block

15 Packet Delay Variation Metrics
Block

16 Delay Metrics Block

17 Burst/Gap Loss Summary Statistics
Block

18 Burst/Gap Discard Summary
Statistics Block

19 Frame Impairment Statistics
Summary

20 Burst/Gap Loss Metrics Block

21 Burst/Gap Discard Metrics Block

22 MPEG2 Transport Stream PSI-
Independent

Decodability Statistics Metrics
Block

23 De-Jitter Buffer Metrics Block

24 Discard Count Metrics Block

25 DRLE (Discard RLE Report)

26 BDR (Bytes Discarded Report)

27 RFISD (RTP Flows Initial
Synchronization Delay)

28 RFSO (RTP Flows Synchronization
Offset Metrics Block)

29 MOS Metrics Block

30 LCB (Loss Concealment Metrics
Block)

31 CSB (Concealed Seconds Metrics
Block)

32 MPEG2 Transport Stream PSI
Decodability Statistics Block

typeSpecific: Number
The contents of this field depend on the block type.

value: Buffer
The contents of this field depend on the block type.

voipMetrics: Object
Type 7 only. The voipMetrics object contains the following properties:
burstDensity: Number

The fraction of RTP data packets within burst periods since the
beginning of reception that were either lost or discarded.

ExtraHop 25.2 Trigger API Reference 197

burstDuration: Number
The mean duration, expressed in milliseconds, of the burst periods
that have occurred since the beginning of reception.

discardRate: Number
The fraction of RTP data packets from the source that have been
discarded since the beginning of reception, due to late or early
arrival, under-run or overflow at the receiving jitter buffer.

endSystemDelay: Number
The most recently estimated end system delay, expressed in
milliseconds.

extRFactor: Number
The external R factor quality metric. A value of 127 indicates this
parameter is unavailable.

gapDensity: Number
The fraction of RTP data packets within inter-burst gaps since the
beginning of reception that were either lost or discarded.

gapDuration: Number
The mean duration of the gap periods that have occurred since the
beginning of reception, expressed in milliseconds.

gmin: Number
The gap threshold.

jbAbsMax: Number
The absolute maximum delay, expressed in milliseconds, that the
adaptive jitter buffer can reach under worst case conditions.

jbMaximum: Number
The current maximum jitter buffer delay, which corresponds to the
earliest arriving packet that would not be discarded, expressed in
milliseconds.

jbNominal: Number
The current nominal jitter buffer delay, which corresponds to the
nominal jitter buffer delay for packets that arrive exactly on time,
expressed in milliseconds.

lossRate: Number
The fraction of RTP data packets from the source lost since the
beginning of reception.

mosCQ: Number
The estimated mean opinion score for conversational quality
(MOS-CQ). A value of 127 indicates this parameter is unavailable.

mosLQ: Number
The estimated mean opinion score for listening quality (MOS-LQ).
A value of 127 indicates this parameter is unavailable.

noiseLevel: Number
The noise level, expressed in decibels.

rerl: Number
The residual echo return loss value, expressed in decibels.

rFactor: Number
The R factor quality metric. A value of 127 indicates this
parameter is unavailable.

ExtraHop 25.2 Trigger API Reference 198

roundTripDelay: Number
The most recently calculated round trip time (RTT) between RTP
interfaces, expressed in milliseconds.

rxConfig: Number
The receiver configuration byte.

signalLevel: Number
The voice signal relative level, expressed in decibels.

ssrc: Number
The SSRC of the sender.

record: Object
The record object that can be sent to the configured recordstore through a call to
RTCP.commitRecord() on an RTCP_MESSAGE event.

The default record object can contain the following properties:

• callId

• clientIsExternal

• cName

• flowId

• receiverIsExternal

• senderIsExternal

• serverIsExternal

• signalingFlowId

The ID of the corresponding SIP or SCCP flow, which negotiates the VoIP call monitored by the
RTCP flow.

RTP

The RTP class enables you to store metrics and access properties on RTP_OPEN, RTP_CLOSE, and
RTP_TICK events.

Events
RTP_CLOSE

Runs when an RTP connection is closed.
RTP_OPEN

Runs when a new RTP connection is opened.
RTP_TICK

Runs periodically on RTP flows.

Methods
commitRecord(): void

Sends a record to the configured recordstore on an RTP_TICK event. Record commits on RTP_OPEN
and RTP_CLOSE events are not supported.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

ExtraHop 25.2 Trigger API Reference 199

Properties
bytes: Number

The number of bytes sent.

Access only on RTP_TICK events; otherwise, an error will occur.
callId: String

The call ID associated with the SIP or SCCP flow.
drops: Number

The number of dropped packets detected.

Access only on RTP_TICK events; otherwise, an error will occur.
dups: Number

The number of duplicate packets detected.

Access only on RTP_TICK events; otherwise, an error will occur.
jitter: Number

An estimate of the statistical variance of the data packet interarrival time.

Access only on RTP_TICK events; otherwise, an error will occur.
l2Bytes: Number

The number of L2 bytes.

Access only on RTP_TICK events; otherwise, an error will occur.
mos: Number

The estimated mean opinion score for quality.

Access only on RTP_TICK events; otherwise, an error will occur.
outOfOrder: Number

The number of out-of-order messaged detected.

Access only on RTP_TICK events; otherwise, an error will occur.
payloadType: String

The type of RTP payload.

Access only on RTP_TICK events; otherwise, an error will occur.

payloadTypeId payloadType

0 ITU-T G.711 PCMU Audio

3 GSM 6.10 Audio

4 ITU-T G.723.1 Audio

5 IMA ADPCM 32kbit Audio

6 IMA ADPCM 64kbit Audio

7 LPC Audio

8 ITU-T G.711 PCMA Audio

9 ITU-T G.722 Audio

10 Linear PCM Stereo Audio

11 Linear PCM Audio

12 QCELP

ExtraHop 25.2 Trigger API Reference 200

payloadTypeId payloadType

13 Comfort Noise

14 MPEG Audio

15 ITU-T G.728 Audio

16 IMA ADPCM 44kbit Audio

17 IMA ADPCM 88kbit Audio

18 ITU-T G.729 Audio

25 Sun CellB Video

26 JPEG Video

28 Xerox PARC Network Video

31 ITU-T H.261 Video

32 MPEG Video

33 MPEG-2 Transport Stream

34 ITU-T H.263-1996 Video

payloadTypeId: Number
The numeric value of the payload type. See table under payloadType.

Access only on RTP_TICK events; otherwise, an error will occur.
pkts: Number

The number of packets sent.

Access only on RTP_TICK events; otherwise, an error will occur.
record: Object

The record object that can be sent to the configured recordstore through a call to
RTP.commitRecord() on an RTP_TICK event.

The default record object can contain the following properties:

• bytes

• callId

• clientIsExternal

• drops

• dups

• flowId

• jitter

• l2Bytes

• mos

• outOfOrder

• payloadType

• payloadTypeId

• pkts

• receiverIsExternal

• rFactor

• senderIsExternal

• serverIsExternal

ExtraHop 25.2 Trigger API Reference 201

• signalingFlowId

The ID of the corresponding SIP or SCCP flow, which negotiates the VoIP call streamed by the
RTP flow.

• ssrc

• version

Access record objects only on RTP_TICK events; otherwise, an error will occur.
rFactor: Number

The R factor quality metric.

Access only on RTP_TICK events; otherwise, an error will occur.
ssrc: Number

The SSRC of sender.
version: Number

The RTP version number.

SCCP

Skinny Client Control Protocol (SCCP) is a Cisco proprietary protocol for communicating with VoIP devices.
The SCCP class enables you to store metrics and access properties on SCCP_MESSAGE events.

Events
SCCP_MESSAGE

Runs on every SCCP message processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on an SCCP_MESSAGE event.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
callId: String

The call ID associated with the RTP flow.
callInfo: Object

An object containing information about the current SCCP called. The object contains the following
fields:
callReference: Number

The unique identifier of the call.
callType: Number

The ID of the call type.

ID Call Type

1 Inbound

2 Outbound

3 Forward

ExtraHop 25.2 Trigger API Reference 202

calledPartyName: String
The name of the recipient of the call.

calledPartyNumber: String
The phone number of the recipient of the call.

callingPartyName: String
The name of the caller.

callingPartyNumber: String
The phone number of the caller.

lineInstance: Number
The unique identifier of the line.

callStats: Object
An object containing statistics for the SCCP call, as reported and calculated by the client. The object
contains the following fields:
reportedBytesIn: Number

The number of L7 bytes received.
reportedBytesOut: Number

The number of L7 bytes sent.
reportedJitter: Number

The level of packet jitter, or variation in latency, during the call.
reportedLatency: Number

The level of packet latency, expressed in milliseconds, during the call.
reportedPktsIn: Number

The number of packets received.
reportedPktsLost: Number

The number of packets lost during the call.
reportedPktsOut: Number

The number of packets sent.
msgType: String

The decoded SCCP message type.
receiverBytes: Number

The number of L4 bytes from the receiver.
receiverL2Bytes: Number

The number of L2 bytes from the receiver.
receiverPkts: Number

The number of packets from the receiver.
receiverRTO: Number

The number of retransmission timeouts (RTOs) from the receiver.
receiverZeroWnd: Number

The number of zero windows from the receiver.
record: Object

The record object that can be sent to the configured recordstore through a call to
SCCP.commitRecord() on an SCCP_MESSAGE event.

The default record object can contain the following properties:

• clientIsExternal

• msgType

ExtraHop 25.2 Trigger API Reference 203

• receiverBytes

• receiverIsExternal

• receiverL2Bytes

• receiverPkts

• receiverRTO

• receiverZeroWnd

• roundTripTime

• senderBytes

• senderIsExternal

• senderL2Bytes

• senderPkts

• senderRTO

• senderZeroWnd

• serverIsExternal

roundTripTime: Number
The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last SCCP_MESSAGE event
ran. The value is NaN if there are no RTT samples.

senderBytes: Number
The number of L4 bytes from the sender.

senderL2Bytes: Number
The number of L2 bytes from the sender.

senderPkts: Number
The number of packets from the sender.

senderRTO: Number
The number of retransmission timeouts (RTOs) from the sender.

senderZeroWnd: Number
The number of zero windows from the sender.

SDP

The SDP class enables you to access properties on SIP_REQUEST and SIP_RESPONSE events.

The SIP_REQUEST and SIP_RESPONSE events are defined in the SIP section.

Properties
mediaDescriptions: Array

An array of objects that contain the following fields:
attributes: Array of Strings

The optional session attributes.
bandwidth: Array of Strings

The optional proposed bandwidth type and bandwidth to be consumed by the session or
media.

connectionInfo: String
The connection data, including network type, address type and connection adddress. May also
contain optional sub-fields, depending on the address type.

ExtraHop 25.2 Trigger API Reference 204

description: String
The session description which may contain one or more media descriptions. Each media
description consists of media, port and transport protocol fields.

encryptionKey: String
The optional encryption method and key for the session.

mediaTitle: String
The title of the media stream.

sessionDescription: Object
An object that contains the following fields:
attributes: Array of Strings

The optional session attributes.
bandwidth: Array of Strings

The optional proposed bandwidth type and bandwidth to be consumed by the session or
media.

connectionInfo: String
The connection data, including network type, address type and connection address. May also
contain optional sub-fields, depending on the address type.

email: String
The optional email address. If present, this can contain multiple email addresses.

encryptionKey: String
The optional encryption method and key for the session.

origin: String
The originator of the session, including username, address of the user's host, a session
identifier, and a version number.

phoneNumber: String
The optional phone number. If present, this can contain multiple phone numbers.

sessionInfo: String
The session description.

sessionName: String
The session name.

timezoneAdjustments: String
The adjustment time and offset for a scheduled session.

uri: String
The optional URI intended to provide more information about the session.

version: String
The version number. This should be 0.

timeDescriptions: Array
An array of objects that contain the following fields:
repeatTime: String

The session repeat time, including interval, active duration, and offsets from start time.
time: String

The start time and stop times for a session.

ExtraHop 25.2 Trigger API Reference 205

SFlow

The SFlow class object enables you to store metrics and access properties on SFLOW_RECORD events.
sFlow is a sampling technology for monitoring traffic in data networks. sFlow samples every nth packet
and sends it to the collector whereas NetFlow sends data from every flow to the collector. The primary
difference between sFlow and NetFlow is that sFlow is network layer independent and can sample
anything.

Events
SFLOW_RECORD

Runs upon receipt of an SFlow sample exported from a flow network.

Methods
commitRecord(): void

Sends a flow record object, which indicates the sFlow format, to the configured recordstore on an
SFLOW_RECORD event.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if .commitRecord is called
multiple times for the same unique record.

Properties
deltaBytes: Number

The number of L3 bytes in the flow packet.
dscp: Number

The number representing the last differentiated services code point (DSCP) value of the flow packet.
dscpName: String

The name associated with the DSCP value transmitted by a device in the flow. The following table
displays well-known DSCP names:

Number Name

8 CS1

10 AF11

12 AF12

14 AF13

16 CS2

18 AF21

20 AF22

22 AF23

24 CS3

26 AF31

28 AF32

30 AF33

32 CS4

ExtraHop 25.2 Trigger API Reference 206

Number Name

34 AF41

36 AF42

38 AF43

40 CS5

44 VA

46 EF

48 CS6

56 CS7

egressInterface: FlowInterface
The FlowInterface object that identifies the output interface.

format: String
The format of the SFlow record. Valid value is “sFlow v5”.

headerData: Buffer
The Buffer object containing the raw bytes of the entire flow packet header.

ingressInterface: FlowInterface
The FlowInterface object that identifies the input interface.

ipPrecedence: Number
The value of the IP precedence field associated with the DSCP of the flow packet.

ipproto: String
The IP protocol associated with the flow, such as TCP or UDP.

network: FlowNetwork
Returns a FlowNetwork object that identifies the exporter and contains the following properties:
id: String

The identifier of the FlowNetwork.
ipaddr: IPAddress

The IP address of the FlowNetwork.
record: Object

The flow record object that can be sent to the configured recordstore through a call to
SFlow.commitRecord() on an SFLOW_RECORD event.

The default record object can contain the following properties:

• clientIsExternal

• deltaBytes

• dscpName

• egressInterface

• format

• ingressInterface

• ipPrecedence

• ipproto

• network

• networkAddr

• receiverIsExternal

• senderIsExternal

ExtraHop 25.2 Trigger API Reference 207

• serverIsExternal

• tcpFlagName

• tcpFlags

tcpFlagNames: Array
A string array of TCP flag names, such as SYN or ACK, found in the flow packets.

tcpFlags: Number
The bitwise OR of all TCP flags set on the flow.

tos: Number
The type of service (ToS) number defined in the IP header.

SIP

The SIP class enables you to store metrics and access properties on SIP_REQUEST and SIP_RESPONSE
events.

Events
SIP_REQUEST

Runs on every SIP request processed by the device.
SIP_RESPONSE

Runs on every SIP response processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on either a SIP_REQUEST or SIP_RESPONSE event.

The event determines which properties are committed to the record object. To view the default
properties committed for each event, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

findHeaders(name: String): Array
Enables access to SIP header values. The result is an array of header objects (with name and value
properties) where the names match the prefix of the string passed to findHeaders.

Properties
callId: String

The call ID for this message.
from: String

The contents of the From header.
hasSDP: Boolean

The value is true if this event includes SDP information.
headers: Object

An array-like object that enables access to SIP header names and values. Access a specific header
with one of the following methods:
string property:

The name of the header, accessible in a dictionary-like fashion. For example:

var headers = SIP.headers;
session = headers["X-Session-Id"];

ExtraHop 25.2 Trigger API Reference 208

accept = headers.accept;

numeric property:
The order in which headers appear on the wire. The returned object has a name and a value
property. Numeric properties are useful for iterating over all the headers and disambiguating
headers with duplicate names. For example:

for (i = 0; i < headers.length; i++) {
 hdr = headers[i];
 debug("headers[" + i + "].name: " + hdr.name);
 debug("headers[" + i + "].value: " + hdr.value);
}

Note: Saving SIP.headers to the Flow store does not save all of the individual
header values. It is best practice to save the individual header values to the
Flow store.

method: String
The SIP method.

Method Name Description

ACK Confirms the client has received a final response to an INVITE
request.

BYE Terminates a call. Can be sent by either the caller or the callee.

CANCEL Cancels any pending request

INFO Sends mid-session information that doesn't change the session
state.

INVITE Invites a client to participate in a call session.

MESSAGE Transports instant messages using SIP.

NOTIFY Notify the subscriber of a new event.

OPTIONS Queries the capabilities of servers.

PRACK Provisional acknowledgment.

PUBLISH Publish an event to the server.

REFER Ask recipient to issue a SIP request (call transfer).

REGISTER Registers the address listed in the To header field with a SIP
server.

SUBSCRIBE Subscribes for an event of Notification from the Notifier.

UPDATE Modifies the state of a session without changing the state of
the dialog.

payload: Buffer | null
The Buffer object that contains the raw payload bytes of the event transaction. If the payload was
compressed, the decompressed content is returned.

The buffer contains the N first bytes of the payload, where N is the number of payload bytes
specified by the Bytes to Buffer field when the trigger was configured through the ExtraHop WebUI.
The default number of bytes is 2048. For more information, see Advanced trigger options.

ExtraHop 25.2 Trigger API Reference 209

processingTime: Number
The time between the request and the first response, expressed in milliseconds. The value is NaN on
malformed and aborted responses or if the timing is invalid.

Access only on SIP_RESPONSE events; otherwise, an error will occur.
record: Object

The record object that can be sent to the configured recordstore through a call to
SIP.commitRecord() on either a SIP_REQUEST or SIP_RESPONSE event.

The event on which the method was called determines which properties the default record object
can contain as displayed in the following table:

SIP_REQUEST SIP_RESPONSE

callId callId

clientIsExternal clientIsExternal

clientZeroWnd clientZeroWnd

from from

hasSDP hasSDP

method processingTime

receiverIsExternal receiverIsExternal

reqBytes roundTripTime

reqL2Bytes rspBytes

reqPkts rspL2Bytes

reqRTO rspPkts

reqSize rspRTO

senderIsExternal rspSize

serverIsExternal senderIsExternal

serverZeroWnd serverIsExternal

to serverZeroWnd

uri statusCode

to

reqBytes: Number
The number of L4 request bytes, excluding L4 headers.

reqL2Bytes: Number
The number of L2 request bytes, including L2 headers.

reqPkts: Number
The number of request packets.

reqRTO: Number
The number of request retransmission timeouts (RTOs).

reqSize: Number
The number of L7 request bytes, excluding SIP headers.

Access only on SIP_REQUEST events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 210

reqZeroWnd: Number
The number of zero windows in the request.

roundTripTime: Number
The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last SIP_REQUEST or
SIP_RESPONSE event ran. The value is NaN if there are no RTT samples.

rspBytes: Number
The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

rspL2Bytes: Number
The number of L2 response bytes, including protocol overhead, such as headers.

rspPkts: Number
The number of response packets.

rspRTO: Number
The number of response retransmission timeouts (RTOs).

rspSize: Number
The number of L7 response bytes, excluding SIP headers.

Access only on SIP_RESPONSE events; otherwise, an error will occur.
rspZeroWnd: Number

The number of zero windows in the response.
statusCode: Number

The SIP response status code.

Access only on SIP_RESPONSE events; otherwise, an error will occur.

The following table displays provisional responses:

Number Response

100 Trying

180 Ringing

181 Call is Being Forwarded

182 Queued

183 Session In Progress

199 Early Dialog Terminated

The following table displays successful responses:

Number Response

200 OK

202 Accepted

204 No Notification

The following table displays redirection responses:

ExtraHop 25.2 Trigger API Reference 211

Number Response

300 Multiple Choice

301 Moved Permanently

302 Moved Temporarily

305 Use Proxy

380 Alternative Service

The following table displays client failure responses:

Number Response

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Timeout

409 Conflict

410 Gone

411 Length Required

412 Conditional Request Failed

413 Request Entity Too Large

414 Request URI Too Long

415 Unsupported Media Type

416 Unsupported URI Scheme

417 Unknown Resource Priority

420 Bad Extension

421 Extension Required

422 Session Interval Too Small

423 Interval Too Brief

424 Bad Location Information

428 Use Identity Header

429 Provide Referrer Identity

430 Flow Failed

433 Anonymity Disallowed

ExtraHop 25.2 Trigger API Reference 212

Number Response

436 Bad Identity Info

437 Unsupported Certificate

438 Invalid Identity Header

439 First Hop Lacks Outbound Support

470 Consent Needed

480 Temporarily Unavailable

481 Call/Transaction Does Not Exist

482 Loop Detected

483 Too Many Hops

484 Address Incomplete

485 Ambiguous

486 Busy Here

487 Request Terminated

488 Not Acceptable Here

489 Bad Event

491 Request Pending

493 Undecipherable

494 Security Agreement Required

The following table displays server failure responses:

Number Response

500 Server Internal Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Server Timeout

505 Version Not Supported

513 Message Too Large

580 Precondition Failure

The following table displays global failure responses:

Name Response

600 Busy Everywhere

603 Decline

604 Does Not Exist Anywhere

ExtraHop 25.2 Trigger API Reference 213

Name Response

606 Not Acceptable

to: String
The contents of the To header.

uri: String
The URI for SIP request or response.

SLP

The SLP class enables you to store metrics and access properties on SLP_MESSAGE events.

Events
SLP_MESSAGE

Runs on every SLP message processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on an SLP_MESSAGE event.

To view the default properties committed, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same record.

Properties
attrList: String | null

The attributes for the SLP message, in a comma-separated list.
functionId: Number

The numeric function ID of the SLP message, which corresponds to the message type string.
msgType: String

The SLP message type string, which corresponds to the numeric function ID as shown in the
following table:

Message Type Function ID

Service Request 1

Service Reply 2

Service Registration 3

Service Deregister 4

Service Acknowledge 5

Attribute Request 6

Attribute Reply 7

DA Advertisement 8

Service Type Request 9

Service Type Reply 10

ExtraHop 25.2 Trigger API Reference 214

Message Type Function ID

SA Advertisement 11

record: Object
The record object that can be sent to the configured recordstore through a call to
SLP.commitRecord() on an SLP_MESSAGE event. The default record object can contain the
following properties:

• clientIsExternal

• functionId

• msgType

• receiverIsExternal

• scopeList

• senderIsExternal

• serverIsExternal

scopeList: String | null
The scope for the SLP message, in a comma-separated list.

SMPP

The SMPP class enables you to store metrics and access properties on SMPP_REQUEST and
SMPP_RESPONSE events.

Note: The mdn, shortcode, and error properties may be null, depending on availability and
relevance.

Events
SMPP_REQUEST

Runs on every SMPP request processed by the device.
SMPP_RESPONSE

Runs on every SMPP response processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on a SMPP_RESPONSE event. Record commits on
SMPP_REQUEST events are not supported.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
command: String

The SMPP command ID.
destination: String

The destination address as specified in the SMPP_REQUEST. The value is null if this is not available
for the current command type.

error: String
The error code corresponding to command_status. If the command status is ROK, the value is null.

ExtraHop 25.2 Trigger API Reference 215

Access only on SMPP_RESPONSE events; otherwise, an error will occur.
message: Buffer

The contents of the short_message field on DELIVER_SM and SUBMIT_SM messages. The value is
null if unavailable or not applicable.

Access only on SMPP_REQUEST events; otherwise, an error will occur.
processingTime: Number

The server processing time, expressed in milliseconds. Equivalent to rspTimeToFirstByte -
reqTimeToLastByte. The value is NaN on malformed and aborted responses or if the timing is
invalid.

Access only on SMPP_RESPONSE events; otherwise, an error will occur.
record: Object

The record object that can be sent to the configured recordstore through a call to
SMPP.commitRecord() on a SMPP_RESPONSE event.

The default record object can contain the following properties:

• clientIsExternal

• clientZeroWnd

• command

• destination

• error

• receiverIsExternal

• reqSize

• reqTimeToLastByte

• rspSize

• rspTimeToFirstByte

• rspTimeToLastByte

• senderIsExternal

• serverIsExternal

• serverZeroWnd

• source

• processingTime

reqSize: Number
The number of L7 request bytes, excluding SMPP headers.

reqTimeToLastByte: Number
The time from the first byte of the request until the last byte of the request, expressed in
milliseconds. The value is NaN on malformed and aborted requests, or if the timing is invalid.

rspSize: Number
The number of L7 response bytes, excluding SMPP headers.

Access only on SMPP_RESPONSE events; otherwise, an error will occur.
rspTimeToFirstByte: Number

The time from the first byte of the request until the first byte of the response, expressed in
milliseconds. The value is NaN on malformed and aborted responses, or if the timing is invalid.

Access only on SMPP_RESPONSE events; otherwise, an error will occur.
rspTimeToLastByte: Number

The time from the first byte of the request until the last byte of the response, expressed in
milliseconds. The value is NaN on malformed and aborted responses, or if the timing is invalid.

Access only on SMPP_RESPONSE events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 216

source: String
The source address as specified in the SMPP_REQUEST. The value is null if this is not available for
the current command type.

SMTP

The SMTP class enables you to store metrics and access properties on SMTP_REQUEST and
SMTP_RESPONSE events.

Events
SMTP_OPEN

Runs on every SMTP greeting processed by the device.
SMTP_REQUEST

Runs on every SMTP request processed by the device.
SMTP_RESPONSE

Runs on every SMTP response processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on a SMTP_RESPONSE event. Record commits on
SMTP_REQUEST events are not supported.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
dataSize: Number

The size of the attachment, expressed in bytes.
domain: String

The domain of the address the message is coming from.
error: String

The error code corresponding to status code.

Access only on SMTP_RESPONSE events; otherwise, an error will occur.
headers: Object

An object that enables access to SMTP header names and values.

The value of the headers property is the same when accessed on either the SMTP_REQUEST or the
SMTP_RESPONSE event.

isEncrypted: Boolean
The value is true if the application is encrypted with STARTTLS.

isReqAborted: Boolean
The value is true if the connection is closed before the SMTP request is complete.

isRspAborted: Boolean
The value is true if the connection is closed before the SMTP response is complete.

Access only on SMTP_RESPONSE events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 217

method: String
The SMTP method.

processingTime: Number
The server processing time, expressed in milliseconds. Equivalent to rspTimeToFirstByte -
reqTimeToLastByte. The value is NaN on malformed and aborted responses or if the timing is
invalid.

Access only on SMTP_RESPONSE events; otherwise, an error will occur.
recipientList: Array of Strings

A list of recipient addresses.

The value of the recipientList property is the same when accessed on either the
SMTP_REQUEST or the SMTP_RESPONSE event.

record: Object
The record object that can be sent to the configured recordstore through a call to
SMTP.commitRecord() on a SMTP_RESPONSE event.

The default record object can contain the following properties:

• clientIsExternal

• clientZeroWnd

• dataSize

• domain

• error

• isEncrypted

• isReqAborted

• isRspAborted

• method

• processingTime

• receiverIsExternal

• recipient

• recipientList

• reqBytes

• reqL2Bytes

• reqPkts

• reqRTO

• reqSize

• reqTimeToLastByte

• roundTripTime

• rspBytes

• rspL2Bytes

• rspPkts

• rspRTO

• rspSize

• rspTimeToFirstByte

• rspTimeToLastByte

• sender

• senderIsExternal

• serverIsExternal

• serverZeroWnd

• statusCode

• statusText

ExtraHop 25.2 Trigger API Reference 218

Access the record object only on SMTP_RESPONSE events; otherwise, an error will occur.
reqBytes: Number

The number of L4 request bytes, excluding L4 headers.
reqL2Bytes: Number

The number of L2 request bytes, including L2 headers.
reqPkts: Number

The number of request packets.
reqRTO: Number

The number of request retransmission timeouts (RTOs).
reqSize: Number

The number of L7 request bytes, excluding SMTP headers.
reqTimeToLastByte: Number

The time from the first byte of the request until the last byte of the request, expressed in
milliseconds. The value is NaN on malformed and aborted requests, or if the timing is invalid.

reqZeroWnd: Number
The number of zero windows in the request.

roundTripTime: Number
The median TCP round trip time (RTT), expressed in milliseconds. An RTT is the time it took for
a device to send a single TCP packet and receive an immediate corresponding acknowledgment
(ACK) packet. The median value is calculated by sampling the RTTs observed since the last
SMTP_RESPONSE event ran. The value is NaN if there are no RTT samples.

Access only on SMTP_RESPONSE events; otherwise, an error will occur.
rspBytes: Number

The number of L4 response bytes, excluding L4 protocol overhead, such as ACKs, headers, and
retransmissions.

rspL2Bytes: Number
The number of L2 response bytes, including protocol overhead, such as headers.

rspPkts: Number
The number of response packets.

rspRTO: Number
The number of response retransmission timeouts (RTOs).

rspSize: Number
The number of L7 response bytes, excluding SMTP headers.

Access only on SMTP_RESPONSE events; otherwise, an error will occur.
rspTimeToFirstByte: Number

The time from the first byte of the request until the first byte of the response, expressed in
milliseconds. The value is NaN on malformed and aborted responses, or if the timing is invalid.

Access only on SMTP_RESPONSE events; otherwise, an error will occur.
rspTimeToLastByte: Number

The time from the first byte of the request until the last byte of the response, expressed in
milliseconds. The value is NaN on malformed and aborted responses, or if the timing is invalid.

Access only on SMTP_RESPONSE events; otherwise, an error will occur.
rspZeroWnd: Number

The number of zero windows in the response.
sender: String

The sender of the message.

ExtraHop 25.2 Trigger API Reference 219

statusCode: Number
The SMTP status code of the response or greeting.

Access only on SMTP_RESPONSE or SMTP_OPEN events; otherwise, an error will occur.
statusText: String

The multi-line response or greeting string.

Access only on SMTP_RESPONSE or SMTP_OPEN events; otherwise, an error will occur.

SNMP
The SNMP class enables you to store metrics and access properties on SNMP_REQUEST, SNMP_RESPONSE,
and SNMP_MESSAGE events.

Events
SNMP_REQUEST

Runs on every SNMP request processed by the device.
SNMP_RESPONSE

Runs on every SNMP response processed by the device.
SNMP_MESSAGE

Runs on SNMP messages that do not adhere to typical request and response behavior. Neither the
SNMP_REQUEST event nor the SNMP_RESPONSE event runs on these messages. These messages
include requests sent from a server to a client and responses sent from a client to a server. These
messages also include SNMP traps, which are messages sent from the server that do not prompt a
response.

Methods
commitRecord(): void

Sends a record to the configured recordstore on an SNMP_REQUEST, SNMP_RESPONSE, or
SNMP_MESSAGE event. To view the default properties committed to the record object, see the
record property below.

If the commitRecord() method is called on an SNMP_REQUEST event, the record is not created
until the SNMP_RESPONSE event runs. If the commitRecord() method is called on both the
SNMP_REQUEST and the corresponding SNMP_RESPONSE, only one record is created for request and
response, even if the commitRecord() method is called multiple times on the same trigger events.

Properties
error: String

The SNMP error message.
community: String

The SNMP community string.
payload: Buffer

The Buffer object that contains the raw payload bytes of the event transaction. The buffer contains
the first 1024 bytes of the payload.

pduType: String
The protocol data unit (PDU) type.

record: Object
The record object that can be sent to the configured recordstore through a call to
SNMP.commitRecord() on either an SNMP_REQUEST, SNMP_RESPONSE, or SNMP_MESSAGE event.

ExtraHop 25.2 Trigger API Reference 220

The event on which the method was called determines which properties the default record object
can contain as displayed in the following table:

SNMP_REQUEST SNMP_RESPONSE SNMP_MESSAGE

client client community

clientAddr clientAddr error

clientIsExternal clientIsExternal flowId

clientPort clientPort pduType

community community receiver

flowId error receiverAddr

pduType flowId receiverPort

server pduType receiverIsExternal

serverAddr server sender

serverIsExternal serverAddr senderAddr

serverPort serverIsExternal senderPort

version serverPort senderIsExternal

vlan version version

vlan vlan

version: String
The version of SNMP protocol.

SOCKS
The SOCKet Secure (SOCKS) class enables you to store metrics and access properties on SOCKS_REQUEST
and SOCKS_RESPONSE events.

Events
SOCKS_REQUEST

Runs on every SOCKS message processed by the device.
SOCKS_RESPONSE

Runs on every SOCKS message processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on a SOCKS_RESPONSE event. Record commits on
SOCKS_REQUEST events are not supported. To view the default properties committed to the record
object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

ExtraHop 25.2 Trigger API Reference 221

Properties
authResult: Number

Indicates whether authentication was successful. The following values are valid.

Value Description

0 Succeeded

1 Failed

Note: If the protocol is SOCKS4, the value is always 0 because SOCKS4 does not support
authentication.

authType: Number
The authentication method that was negotiated between the server and the client.

command: Number
The numeric code for the SOCKS command that the client requested. The following command codes
are valid.

Code Description

1 Connect TCP stream

2 Bind TCP port

3 Associate UDP port

record: Object
The record object that can be sent to the configured recordstore through a call to
SOCKS.commitRecord() on an SOCKS_RESPONSE event.

• application

• authResult

• authType

• client

• clientAddr

• clientIsExternal

• clientPort

• command

• flowId

• requestAddress

• requestPort

• responseAddress

• responsePort

• result

• server

• serverAddr

• serverIsExternal

• serverPort

• username

• version

• vlan

Access the record object only on SOCKS_RESPONSE events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 222

requestAddress: IPAddress
The IPAddress object for the address specified by the client in the request.

requestPort: Number
The port number specified by the client in the request.

responseAddress: IPAddress
The IPAddress object for the address specified by the server in the response.

responsePort: Number
The port number specified by the server in the response.

result: Number
The status code specified by the server in the response.

username: String
The name of the user specified by the client for authentication.

version: Number
The SOCKS protocol version.

SSH

Secure Socket Shell (SSH) is a network protocol that provides a secure method for remote login and other
network services over an unsecured network. The SSH class object enables you to store metrics and access
properties on SSH_CLOSE, SSH_OPEN and SSH_TICK events.

Events
SSH_CLOSE

Runs when the SSH connection is shut down by being closed, expired, or aborted.
SSH_OPEN

Runs when the SSH connection is first fully established after negotiating session information. If the
negotiation fails because the key exchange is invalid, the SSH_OPEN event runs when there is an
invalid exchange, and then the SSH_TICK and SSH_CLOSE events run in immediate succession.

If a connection closes before SSH_OPEN runs, SSH_OPEN, SSH_TICK, and SSH_CLOSE run in
immediate succession.

SSH_TICK

Runs periodically on SSH flows.

Methods
commitRecord(): void

Sends a record to the configured recordstore on either an SSH_OPEN, SSH_CLOSE, or SSH_TICK
event.

The event determines which properties are committed to the record object. To view the properties
committed for each event, see the record property below.

For built-in records, each unique record is committed only once, even if .commitRecord is called
multiple times for the same unique record.

Properties
clientBytes: Number

The total number of bytes sent by the client since the last SSH event ran. For SSH_OPEN events, this
property is the number of bytes sent by the client since the start of the flow.

ExtraHop 25.2 Trigger API Reference 223

clientCipherAlgorithm: String
The encryption cipher algorithm on the SSH client.

clientCompressionAlgorithm: String
The compression algorithm applied to data transferred over the connection by the SSH client.

clientCompressionAlgorithmsClientToServer: String
The compression algorithms that the SSH client supports for client to server communications.

clientCompressionAlgorithmsServerToClient: String
The compression algorithms that the SSH client supports for server to client communications.

clientEncryptionAlgorithmsClientToServer: String
The encryption algorithms that the SSH client supports for client to server communications.

clientEncryptionAlgorithmsServerToClient: String
The encryption algorithms that the SSH client supports for server to client communications.

clientImplementation: String
The SSH implementation installed on the client, such as OpenSSH or PUTTY.

clientKexAlgorithms: String
The SSH key exchange algorithms that the client supports.

clientL2Bytes: Number
The total number of L2 client bytes observed since the last SSH event ran. For SSH_OPEN events,
this property is the number of L2 client bytes observed since the start of the flow. Note that this
property does not return the total number of bytes for the entire SSH session.

clientMacAlgorithm: String
The Method Authentication Code (MAC) algorithm on the SSH client.

clientMacAlgorithmsClientToServer: String
The Method Authentication Code (MAC) algorithms that the SSH client supports for client to server
communications.

clientMacAlgorithmsServerToClient: String
The Method Authentication Code (MAC) algorithms that the SSH client supports for server to client
communications.

clientPkts: Number
The total number of packets sent by the client since the last SSH event ran. For SSH_OPEN events,
this property is the number of packets sent by the client since the start of the flow. Note that this
property does not return the total number of packets for the entire SSH session.

clientRTO: Number
The total number of client retransmission timeouts (RTOs) observed since the last SSH event ran. For
SSH_OPEN events, this property is the number of client RTOs observed since the start of the flow.
Note that this property does not return the total number of client RTOs for the entire SSH session.

clientVersion: String
The version of SSH on the client.

clientZeroWnd: Number
The total number of zero windows sent by the client since the last SSH event ran. For SSH_OPEN
events, this property is the number of zero windows sent by the client since the start of the flow.
Note that this property does not return the total number of zero windows for the entire SSH session.

duration: Number
The duration, expressed in milliseconds, of the SSH connection.

Access only on SSH_CLOSE events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 224

hasshAlgorithms: String
A string containing the SSH key exchange, encryption, message authentication, and compression
algorithms that the client supports for SSH communications. These algorithms are communicated in
the SSH_MSG_KEXINIT packet sent at the start of an SSH connection.

hassh: String
An MD5 hash of the hasshAlgorithms string.

hasshServerAlgorithms: String
A string containing the SSH key exchange, encryption, message authentication, and compression
algorithms that the server supports for SSH communications. These algorithms are communicated in
the SSH_MSG_KEXINIT packet sent at the start of an SSH connection.

hasshServer: String
An MD5 hash of the hasshServerAlgorithms string.

kexAlgorithm: String
The Key Exchange (Kex) algorithm on the SSH connection.

messageNumbers: Array of Numbers
The numeric IDs of the SSH messages exchanged, listed in chronological order. The array cannot
contain more than 50 entries. If more than 50 messages are exchanged, the array contains the 50
most recent IDs.

Access only on SSH_OPEN events; otherwise, an error will occur.
record: Object

The record object that can be sent to the configured recordstore through a call to
SSH.commitRecord() on either an SSH_OPEN, SSH_CLOSE, or SSH_TICK event.

The event on which the method was called determines which properties the default record object
can contain as displayed in the following table:

SSH_TICK SSH_OPEN SSH_CLOSE

clientCipherAlgorithm clientCipherAlgorithm clientCipherAlgorithm

clientCompressionAlgorithmclientCompressionAlgorithmclientCompressionAlgorithm

clientImplementation clientImplementation clientImplementation

clientIsExternal clientIsExternal clientIsExternal

clientMacAlgorithm clientMacAlgorithm clientMacAlgorithm

clientVersion clientVersion clientVersion

clientZeroWnd clientZeroWnd clientZeroWnd

kexAlgorithm kexAlgorithm kexAlgorithm

receiverIsExternal receiverIsExternal receiverIsExternal

senderIsExternal senderIsExternal senderIsExternal

serverCipherAlgorithm serverCipherAlgorithm serverCipherAlgorithm

serverCompressionAlgorithmserverCompressionAlgorithmserverCompressionAlgorithm

serverImplementation serverImplementation serverImplementation

serverIsExternal serverIsExternal serverIsExternal

serverMacAlgorithm serverMacAlgorithm serverMacAlgorithm

serverVersion serverVersion serverVersion

ExtraHop 25.2 Trigger API Reference 225

SSH_TICK SSH_OPEN SSH_CLOSE

serverZeroWnd serverZeroWnd serverZeroWnd

duration

roundTripTime: Number
The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last SSH event ran; for
SSH_OPEN events, the sample begins at the start of the flow. The value is NaN if there are no RTT
samples.

serverBytes: Number
The total number of bytes sent by the server since the last SSH event ran. For SSH_OPEN events,
this property is the number of bytes sent by the server since the start of the flow.

serverCipherAlgorithm: String
The encryption cipher algorithm on the SSH server.

serverCompressionAlgorithm: String
Returns the type of compression applied to data transferred over the connection by the SSH server.

serverCompressionAlgorithmsClientToServer: String
The compression algorithms that the SSH server supports for client to server communications.

serverCompressionAlgorithmsServerToClient: String
The compression algorithms that the SSH server supports for server to client communications.

serverEncryptionAlgorithmsClientToServer: String
The encryption algorithms that the SSH server supports for client to server communications.

serverEncryptionAlgorithmsServerToClient: String
The encryption algorithms that the SSH server supports for server to client communications.

serverHostKey: String
The base64 encoding of the public SSH key sent from the server to the client.

serverHostKeyType: String
The type of public SSH key sent from the server to the client, such as ssh-rsa or ssh-ed25519.

serverImplementation: String
The SSH implementation installed on the server, such as OpenSSH or PUTTY.

serverKexAlgorithms: String
The SSH key exchange algorithms that the server supports.

serverL2Bytes: Number
The total number of L2 server bytes observed since the last SSH event ran. For SSH_OPEN events,
this property is the number of L2 server bytes observed since the start of the flow. Note that this
property does not return the total number of bytes for the entire SSH session.

serverMacAlgorithm: String
The Method Authentication Code (MAC) algorithm on the SSH server.

serverMacAlgorithmsClientToServer: String
The Method Authentication Code (MAC) algorithms that the SSH server supports for client to server
communications.

serverMacAlgorithmsServerToClient: String
The Method Authentication Code (MAC) algorithms that the SSH server supports for server to client
communications.

ExtraHop 25.2 Trigger API Reference 226

serverPkts: Number
The total number of packets sent by the server since the last SSH event ran. For SSH_OPEN events,
this property is the number of packets sent by the server since the start of the flow. Note that this
property does not return the total number of packets for the entire SSH session.

serverRTO: Number
The total number of server retransmission timeouts (RTOs) observed since the last SSH event ran.
For SSH_OPEN events, this property is the number of server RTOs observed since the start of the
flow. Note that this property does not return the total number of server RTOs for the entire SSH
session.

serverVersion: String
The version of SSH on the server.

serverZeroWnd: Number
The total number of packets sent by the server since the last SSH event ran. For SSH_OPEN events,
this property is the number of packets sent by the server since the start of the flow. Note that this
property does not return the total number of zero windows for the entire SSH session.

SSL

The SSL class enables you to store metrics and access properties on SSL_OPEN, SSL_CLOSE, SSL_ALERT,
SSL_RECORD, SSL_HEARTBEAT, and SSL_RENEGOTIATE events.

Events
SSL_ALERT

Runs when an TLS alert record is exchanged.
SSL_CLOSE

Runs when the TLS connection is shut down.
SSL_HEARTBEAT

Runs when an TLS heartbeat record is exchanged.
SSL_OPEN

Runs when the TLS connection is first established.
SSL_PAYLOAD

Runs when the decrypted TLS payload matches the criteria configured in the associated trigger.

Depending on the flow, the payload can be found in the following properties:

• Flow.payload1

• Flow.payload2

• Flow.client.payload

• Flow.server.payload

• Flow.sender.payload

• Flow.receiver.payload

Additional payload options are available when you create a trigger that runs on this event. See
Advanced trigger options for more information.

SSL_RECORD

Runs when an TLS record is exchanged.
SSL_RENEGOTIATE

Runs on TLS renegotiation.

ExtraHop 25.2 Trigger API Reference 227

Methods
addApplication(name: String): void

Associates an TLS session with the named application to collect TLS metric data about the session.
For example, you might call SSL.addApplication() to associate TLS certificate data in an
application.

After an TLS session is associated with an application, that pairing is permanent for the lifetime of
the session.

Call only on SSL_OPEN events; otherwise, an error will occur.
commitRecord(): void

Sends a record to the configured recordstore only on SSL_ALERT, SSL_CLOSE, SSL_HEARTBEAT,
SSL_OPEN, or SSL_RENEGOTIATE events. Record commits on SSL_PAYLOAD and SSL_RECORD
events are not supported.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

getClientExtensionData(extension_name | extension_id): Buffer | Null
Returns the data for the specified extension if the extension was passed as part of the Hello message
from the client. Returns null if the message does not contain data.

Call only on SSL_OPEN and SSL_RENEGOTIATE events; otherwise, an error will occur.
getServerExtensionData(extension_name | extension_id): Buffer | Null

Returns data for the specified extension if the extension was passed as part of the Hello message
from the server. Returns null if the message does not contain data.

Call only on SSL_OPEN and SSL_RENEGOTIATE events; otherwise, an error will occur.
hasClientExtension(extension_name | extension_id): boolean

Returns true for the specified extension if the extension was passed as part of the Hello message
from the client.

Call only on SSL_OPEN and SSL_RENEGOTIATE events; otherwise, an error will occur.
hasServerExtension(extension_name | extension_id): boolean

Returns true for the specified extension if the extension was passed as part of the Hello message
from the server.

Call only on SSL_OPEN and SSL_RENEGOTIATE events; otherwise, an error will occur.

The following table provides a list of known TLS extensions.

ID Name

0 server_name

1 max_fragment_length

2 client_certificate_url

3 trusted_ca_keys

4 truncated_hmac

5 status_request

6 user_mapping

7 client_authz

8 server_authz

ExtraHop 25.2 Trigger API Reference 228

ID Name

9 cert_type

10 supported_groups

11 ec_point_formats

12 srp

13 signature_algorithms

14 use_srtp

15 heartbeat

16 application_layer_protocol_negotiation

17 status_request_v2

18 signed_certificate_timestamp

19 client_certificate_type

20 server_certificate_type

27 compress_certificate

28 record_size_limit

29 pwd_protect

30 pwd_clear

31 password_salt

35 session_ticket

41 pre_shared_key

42 early_data

43 supported_versions

44 cookie

45 psk_key_exchange_modes

47 certificate_authorities

48 oid_filters

49 post_handshake_auth

50 signature_algorithms_cert

51 key_share

65281 renegotiation_info

65486 encrypted_server_name

The following extensions are sent out by applications to test whether servers can handle unknown
extensions. For more information about these extensions, see Applying GREASE to TLS Extensibility .

• 2570

• 6682

• 10794

https://tools.ietf.org/html/draft-davidben-tls-grease-01

ExtraHop 25.2 Trigger API Reference 229

• 14906

• 19018

• 23130

• 27242

• 31354

• 35466

• 39578

• 43690

• 47802

• 51914

• 56026

• 60138

• 64250

Properties
alertCode: Number

The numeric representation of the TLS alert. The following table displays the possible TLS alerts,
which are defined in the AlertDescription data structure in RFC 2246:

Alert Number

close_notify 0

unexpected_message 10

bad_record_mac 20

decryption_failed 21

record_overflow 22

decompression_failure 30

handshake_failure 40

bad_certificate 42

unsupported_certificate 43

certificate_revoked 44

certificate_expired 45

certificate_unknown 46

illegal_parameter 47

unknown_ca 48

access_denied 49

decode_error 50

decrypt_error 51

export_restriction 60

protocol_version 70

insufficient_security 71

internal_error 80

ExtraHop 25.2 Trigger API Reference 230

Alert Number

user_canceled 90

no_renegotiation 100

If the session is opaque, the value is SSL.ALERT_CODE_UNKNOWN (null).

Access only on SSL_ALERT events; otherwise, an error will occur.
alertCodeName: String

The name of the TLS alert associated with the alert code. See the alertCode property for alert
names associated with alert codes. The value is null if no name is available for the associated alert
code.

Access only on SSL_ALERT events; otherwise, an error will occur.
alertLevel: Number

The numeric representation of the TLS alert level. The following possible alert levels are defined in
the AlertLevel data structure in RFC 2246:

• warning (1)

• fatal (2)

If the session is opaque, the value is SSL.ALERT_LEVEL_UNKNOWN (null).

Access only on SSL_ALERT events; otherwise, an error will occur.
certificate: SSLCert

The TLS server certificate object associated with the communication. Each object contains the
following properties:
authorityInfoAccess: Object

An object that contains information from the Authority Information Access extension, which
specifies information about the certificate authority (CA). The object contains the following
fields:
location: String

The URL of the Online Certificate Status Protocol (OCSP) Responder that can verify
whether the certificate is valid.

method: String
The OID of the method that the certificate issuer can be accessed with.

authorityKeyIdentifier: String | Null
The identifier for the public key of the certificate authority (CA), expressed as an octet string.

Note: This field does not contain the authority certification issuer or serial number.

basicConstraints: Object
An object that contains information from the Basic Constraints extension, which specifies the
type of certificate subject. The object contains the following fields:
ca: Boolean

Indicates whether the subject of the certificate is a CA.
pathlen: Number

The maximum number of certificates that can appear in the certificate chain after this
certificate.

certificatePolicies: Array of Strings
An array of OIDs for the policies specified in the Certificate Policies extension. Qualifiers are
not included in this array.

ExtraHop 25.2 Trigger API Reference 231

crlDistributionPoints: Array of Strings
An array of objects that contain information about servers that host certificate revocation lists
(CRLs) for the server certificate. The servers are specified in the CRL distribution point (CDP)
extension. Each object contains the following fields:
crlIssuer: Array of Strings

An array of locations where the certificate of the CRL issuer can be retrieved.
distPoint: Array of Strings

An array of locations where the CRL can be retrieved.
reasons: Array of Strings

An array of reason codes that indicate the reasons that the certificate could be revoked
by the CRL distribution point.

extensionOIDs: Array of Strings
An array of OIDs for the X509 extensions specified in the certificate.

extendedKeyUsage: Array of Strings
An array of uses for the public key of the server certificate specified in the Extended Key
Usage extension. The array can contain the following strings:

• serverAuth

• clientAuth

• emailProtection

• codeSigning

• OCSPSigning

• timeStamping

• anyExtendedKeyUsage

• nsSGC

fingerprint: String
The hexadecimal representation of the SHA-1 hash of the certificate. The string contains no
delimiters, as shown in the following example:

55F30E6D49E19145CF680E8B7E3DC8FC7041DC81

The SHA-1 certificate hash appears in the server certificate dialog box of most browsers.
fingerprintSHA256: String

The hexadecimal representation of the SHA-256 hash of the certificate. The string contains
no delimiters, as shown in the following example:

468C6C84DB844821C9CCB0983C78D1CC05327119B894B5CA1C6A1318784D3675

The SHA-256 certificate hash appears in the server certificate dialog box of most browsers.
getExtensionDataByOID(extension_oid): Buffer

Method that returns a buffer object containing the value of the specified extension, expressed
as an octet string. Returns null if the OID does not exist or the server certificate does not
contain the extension.

inhibitAnyPolicy: Number
The number specified in the Inhibit anyPolicy extension, which limits the number of
certificates that the anyPolicy extension is applied to. The number specifies how many
additional, non-self-issued certificates in the chain are affected by the anyPolicy extension.

isSelfSigned: Boolean
The value is true if the server certificate is self-signed.

ExtraHop 25.2 Trigger API Reference 232

issuer: String
The common name of the server certificate issuer. The value is null if the issuer is not
available.

issuerAlternativeNames: Array of Strings
An array of Issuer Alternative Names (IANs) specified in the server certificate.

issuerDistinguishedName: Object
An object that contains information about the distinguished name of the certificate issuer.
Each object contains the following properties:
commonName: String

The common name (CN).
country: Array of Strings

The country name (C).
emailAddress: String

The email address.
organization: Array of Strings

The organization name (O).
organizationalUnit: Array of Strings

The organizational unit name (OU).
locality: Array of Strings

The locality name (L).
stateOrProvince: Array of Strings

The state or province name (ST).
keySize: Number

The key size of the server certificate.
keyUsage: Array of Strings

An array of uses for the public key of the server certificate specified in the Key Usage
extension. The array can contain the following strings:

• digitalSignature

• nonRepudiation

• keyEncipherment

• dataEncipherment

• keyAgreement

• keyCertSign

• cRLSign

• encipherOnly

• decipherOnly

notAfter: Number
The expiration time of the server certificate, expressed in UTC.

notBefore: Number
The start time of the server certificate, expressed in UTC. The server certificate is not valid
before this time.

nsComment: String
The comment specified in the Netscape Comment extension. This comment is sometimes
displayed in browsers when users view the server certificate.

ocspNoCheck: Boolean
Indicates whether the signing certificate can be trusted without verification from the OCSP
responder.

ExtraHop 25.2 Trigger API Reference 233

payload: Buffer
The Buffer object that contains the raw payload bytes of the server certificate.

policyConstraints: Object
An object that contains information from the Policy Constraints extension, which specifies
validation constraints for CA certificates.
requireExplicitPolicy: Number

Specifies the maximum number of adjacent certificates in the chain that do not need to
specify an explicit policy.

inhibitPolicyMapping: Number
Specifies the maximum number of adjacent certificates in the certificate chain before
policy mappings are ignored.

policyMappings: Array of Objects
An array of objects that contains information from the Policy Mappings extension, which
indicates policies that are equivalent to each other. Each object contains the following fields.
issuerDomainPolicy: String

The OID of the issuer policy.
subjectDomainPolicy: String

The OID of the subject policy.
publicKeyCurveName: String

The name of the standard elliptic curve that the cryptography of the public key is based on.
This value is determined by the OID or explicit curve parameters specified in the certificate.

publicKeyExponent: String | Null
A string hex representation of the public key exponent. The string is shown in the client
certificate dialog box of most browsers, but without spaces.

publicKeyHasExplicitCurve: Boolean | Null
Indicates whether the certificate specifies explicit parameters for the elliptic curve of the
public key.

publicKeyModulus: String | Null
A string hex representation of the public key modulus. The string is shown in the client
certificate dialog box of most browsers, but without space, such as 010001

serial: String | Null
The serial number assigned to the certificate by the Certificate Authority (CA).

signatureAlgorithm: String | Null
The algorithm applied to sign the server certificate. The following table displays some of the
possible values:

RFC Algorithm

RFC 3279 • md2WithRSAEncryption

• md5WithRSAEncryption

• sha1WithRSAEncryption

RFC 4055 • sha224WithRSAEncryption

• sha256WithRSAEncryption \
• sha384WithRSAEncryption

• sha512WithRSAEncryption

RFC 4491 • id-GostR3411-94-with-
Gost3410-94

ExtraHop 25.2 Trigger API Reference 234

RFC Algorithm
• id-GostR3411-94-with-

Gost3410-2001

subject: String
The subject common name (CN) of the server certificate.

subjectAlternativeNames: Array
An array of strings that correspond to Subject Alternative Names (SANs) included in the
server certificate. Supported SANs are DNS names, email addresses, URIs, and IP addresses.

subjectDistinguishedName: Object
An object that contains information about the distinguished name of the certificate subject.
Each object contains the following properties:
commonName: String

The common name (CN).
country: Array of Strings

The country name (C).
emailAddress: String

The email address.
organization: Array of Strings

The organization name (O).
organizationalUnit: Array of Strings

The organizational unit name (OU).
locality: Array of Strings

The locality name (L).
stateOrProvince: Array of Strings

The state or province name (ST).
subjectKeyIdentifier: String

The identifier for the public key of the certificate subject, expressed as an octet string.
certificates: Array of Objects

An array of certificate objects for each intermediate TLS certificate. The end-entity certificate,
also known as the leaf certificate, is the first object in the array; this object is also returned by the
certificate property.

cipherSuite: String
A string representing the cryptographic cipher suite negotiated between the server and the client.

cipherSuitesHex: String
A hexadecimal representation of the cryptographic cipher suite negotiated between the server and
the client.

cipherSuitesSupported: Array of Objects | Null
An array of objects with the following properties that specify the cipher suites supported by the TLS
client:
name: String

The name of cipher suite.
type: Number

The cipher suite number.

Access only on SSL_OPEN or SSL_RENEGOTIATE events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 235

cipherSuiteType: Number
The numeric value that represents the cryptographic cipher suite negotiated between the server and
the client. Possible values are defined by the IANA TLS Cipher Suite Registry.

clientBytes: Number
The total number of bytes sent by the client since the last SSL_RECORD event ran. Note that this
property does not return the total number of bytes for the entire SSL session.

Access only on SSL_RECORD or SSL_CLOSE events; otherwise, an error will occur.
clientCertificate: SSLCert

The TLS client certificate object associated with the communication. Each object contains the
following properties:
authorityInfoAccess: Object

An object that contains information from the Authority Information Access extension, which
specifies information about the certificate authority (CA). The object contains the following
fields:
location: String

The URL of the Online Certificate Status Protocol (OCSP) Responder that can verify
whether the certificate is valid.

method: String
The OID of the method that the certificate issuer can be accessed with.

authorityKeyIdentifier: String | Null
The identifier for the public key of the certificate authority (CA), expressed as an octet string.

Note: This field does not contain the authority certification issuer or serial number.

basicConstraints: Object
An object that contains information from the Basic Constraints extension, which specifies the
type of certificate subject. The object contains the following fields:
ca: Boolean

Indicates whether the subject of the certificate is a CA.
pathlen: Number

The maximum number of certificates that can appear in the certificate chain after this
certificate.

certificatePolicies: Array of Strings
An array of OIDs for the policies specified in the Certificate Policies extension. Qualifiers are
not included in this array.

crlDistributionPoints: Array of Strings
An array of objects that contain information about servers that host certificate revocation lists
(CRLs) for the client certificate. The servers are specified in the CRL distribution point (CDP)
extension. Each object contains the following fields:
crlIssuer: Array of Strings

An array of locations where the certificate of the CRL issuer can be retrieved.
distPoint: Array of Strings

An array of locations where the CRL can be retrieved.
reasons: Array of Strings

An array of reason codes that indicate the reasons that the certificate could be revoked
by the CRL distribution point.

extensionOIDs: Array of Strings
An array of OIDs for the X509 extensions specified in the client certificate.

ExtraHop 25.2 Trigger API Reference 236

extendedKeyUsage: Array of Strings
An array of uses for the public key of the client certificate specified in the Extended Key
Usage extension. The array can contain the following strings:

• serverAuth

• clientAuth

• emailProtection

• codeSigning

• OCSPSigning

• timeStamping

• anyExtendedKeyUsage

• nsSGC

fingerprint: String
The hexadecimal representation of the SHA-1 hash of the client certificate. The string
contains no delimiters, as shown in the following example:

55F30E6D49E19145CF680E8B7E3DC8FC7041DC81

fingerprintSHA256: String
The hexadecimal representation of the SHA-256 hash of the client certificate. The string
contains no delimiters, as shown in the following example:

468C6C84DB844821C9CCB0983C78D1CC05327119B894B5CA1C6A1318784D3675

getExtensionDataByOID(extension_oid): Buffer
Method that returns a buffer object containing the value of the specified extension, expressed
as an octet string. Returns null if the OID does not exist or the client certificate does not
contain the extension.

keySize: Number
The key size of the client certificate.

keyUsage: Array of Strings
An array of uses for the public key of the client certificate specified in the Key Usage
extension. The array can contain the following strings:

• digitalSignature

• nonRepudiation

• keyEncipherment

• dataEncipherment

• keyAgreement

• keyCertSign

• cRLSign

• encipherOnly

• decipherOnly

inhibitAnyPolicy: Number
The number specified in the Inhibit anyPolicy extension, which limits the number of
certificates that the anyPolicy extension is applied to. The number specifies how many
additional, non-self-issued certificates in the chain are affected by the anyPolicy extension.

isSelfSigned: Boolean
The value is true if the client certificate is self-signed.

issuer: String | Null
The common name of the client certificate issuer. The value is null if the issuer is not
available.

ExtraHop 25.2 Trigger API Reference 237

issuerDistinguishedName: Object
An object that contains information about the distinguished name of the certificate issuer.
Each object contains the following properties:
commonName: String

The common name (CN).
country: Array of Strings

The country name (C).
emailAddress: String

The email address.
organization: Array of Strings

The organization name (O).
organizationalUnit: Array of Strings

The organizational unit name (OU).
locality: Array of Strings

The locality name (L).
stateOrProvince: Array of Strings

The state or province name (ST).
issuerAlternativeNames: Array of Strings

An array of Issuer Alternative Names (IANs) specified in the client certificate.
notAfter: Number

The expiration time of the client certificate, expressed in UTC.
notBefore: Number

The start time of the client certificate, expressed in UTC. The client certificate is not valid
before this time.

nsComment: String
The comment specified in the Netscape Comment extension. This comment is sometimes
displayed in browsers when users view the client certificate.

ocspNoCheck: Boolean
Indicates whether the signing certificate can be trusted without verification from the OCSP
responder.

payload: Buffer
The Buffer object that contains the raw payload bytes of the client certificate.

policyConstraints: Object
An object that contains information from the Policy Constraints extension, which specifies
validation constraints for CA certificates.
requireExplicitPolicy: Number

Specifies the maximum number of adjacent certificates in the chain that do not need to
specify an explicit policy.

inhibitPolicyMapping: Number
Specifies the maximum number of adjacent certificates in the certificate chain before
policy mappings are ignored.

publicKeyCurveName: String
The name of the standard elliptic curve that the cryptography of the public key is based on.
This value is determined by the OID or explicit curve parameters specified in the certificate.

publicKeyExponent: String | Null
A string hex representation of the public key exponent.

ExtraHop 25.2 Trigger API Reference 238

publicKeyHasExplicitCurve: Boolean | Null
Indicates whether the certificate specifies explicit parameters for the elliptic curve of the
public key.

publicKeyModulus: String | Null
A string hex representation of the public key modulus, such as 010001.

policyMappings: Array of Objects
An array of objects that contains information from the Policy Mappings extension, which
indicates policies that are equivalent to each other. Each object contains the following fields.
issuerDomainPolicy: String

The OID of the issuer policy.
subjectDomainPolicy: String

The OID of the subject policy.
signatureAlgorithm: String | Null

The algorithm applied to sign the client certificate. The following table displays some of the
possible values:

RFC Algorithm

RFC 3279 • md2WithRSAEncryption

• md5WithRSAEncryption

• sha1WithRSAEncryption

RFC 4055 • sha224WithRSAEncryption

• sha256WithRSAEncryption

• sha384WithRSAEncryption

• sha512WithRSAEncryption

RFC 4491 • id-GostR3411-94-with-
Gost3410-94

• id-GostR3411-94-with-
Gost3410-2001

subject: String
The subject common name (CN) of the client certificate.

subjectAlternativeNames: Array
An array of strings that correspond to Subject Alternative Names (SANs) included in the client
certificate. Supported SANs are DNS names, email addresses, URIs, and IP addresses.

subjectDistinguishedName: Object
An object that contains information about the distinguished name of the certificate subject.
Each object contains the following properties:
commonName: String

The common name (CN).
country: Array of Strings

The country name (C).
emailAddress: String

The email address.
organization: Array of Strings

The organization name (O).

ExtraHop 25.2 Trigger API Reference 239

organizationalUnit: Array of Strings
The organizational unit name (OU).

locality: Array of Strings
The locality name (L).

stateOrProvince: Array of Strings
The state or province name (ST).

subjectKeyIdentifier: String
The identifier for the public key of the client certificate subject, expressed as an octet string.

clientCertificates: Array of Objects
An array of certificate objects for each intermediate TLS client certificate. The end-entity certificate,
also known as the leaf certificate, is the first object in the array; this object is also returned by the
clientCertificate property.

clientCertificateRequested: Boolean
The value is true if the TLS server requested a client certificate.

Access only on SSL_OPEN, SSL_ALERT, or SSL_RENEGOTIATE events; otherwise, an error will
occur.

clientExtensions: Array | Null
An array of client extension objects that contain the following properties:
id: Number

The ID number of the TLS client extension.
length: Number

The full length of the TLS client extension, expressed in bytes.

Note: An extension might be truncated if the length exceeds the maximum
size. The default is 512 bytes. Truncation has occurred if the
value of this property is smaller than the buffer returned by the
getClientExtensionData() method.

name: String
The name of the TLS client extension, if known. Otherwise, the value indicates that the
extension is unknown. See the table of known TLS extensions in the Methods section.

Access only on SSL_OPEN or SSL_RENEGOTIATE events; otherwise, an error will occur.
clientExtensionsHex: String

A hexadecimal representation of the sorted list of client extensions.

Note: The Generate Random Extensions And Sustain Extensibility (GREASE) values are
removed from the list before encoding.

Access only on SSL_OPEN and SSL_RENEGOTIATE events; otherwise, an error will occur.
clientHelloVersion: Number

The version of TLS specified by the client in the client hello packet.
clientL2Bytes: Number

The total number of L2 client bytes observed since the last SSL_RECORD event ran. Note that this
property does not return the total number of bytes for the entire SSL session.

Access only on SSL_RECORD or SSL_CLOSE events; otherwise, an error will occur.
clientPkts: Number

The total number of packets sent by the client since the last SSL_RECORD event ran. Note that this
property does not return the total number of packets for the entire SSL session.

Access only on SSL_RECORD or SSL_CLOSE events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 240

clientSessionId: String
The client session ID as a byte array encoded as a string.

clientZeroWnd: Number
The total number of zero windows sent by the client since the last SSL_RECORD event ran. Note
that this property does not return the total number of zero windows for the entire SSL session.

Access only on SSL_RECORD or SSL_CLOSE events; otherwise, an error will occur.
contentType: String

The content type for the current record.

Access only on SSL_RECORD events; otherwise, an error will occur.
ecPointFormatsHex: String

A hexadecimal representation of the elliptic-curve point formats that the client can parse.

Access only on SSL_OPEN and SSL_RENEGOTIATE events; otherwise, an error will occur.
encryptionProtocol: String

The TLS protocol version that the transaction is encrypted with.
handshakeTime: Number

The amount of time required to negotiate the TLS connection, expressed in milliseconds. Specifically,
the amount of time between when the client sends a ClientHello message and the server sends
ChangeCipherSpec values as specified in RFC 2246.

Access only on SSL_OPEN or SSL_RENEGOTIATE events; otherwise, an error will occur.
heartbeatPayloadLength: Number

The value of the payload length field of the HeartbeatMessage data structure as specified in RFC
6520.

Access only on SSL_HEARTBEAT events; otherwise, an error will occur.
heartbeatType: Number

The numeric representation of the HeartbeatMessageType field of the HeartbeartMessage data
structure as specified in RFC 6520. Valid values are SSL.HEARTBEAT_TYPE_REQUEST (1),
SSL.HEARTBEAT_TYPE_RESPONSE (2), or SSL.HEARTBEAT_TYPE_UNKNOWN (255).

Access only on SSL_HEARTBEAT events; otherwise, an error will occur.
host: String | Null

The TLS Server Name Indication (SNI), if available.

Access only on SSL_OPEN or SSL_RENEGOTIATE events; otherwise, an error will occur.
isAborted: Boolean

The value is true if the TLS session is aborted.

Access only on SSL_CLOSE, SSL_OPEN, and SSL_RENEGOTIATE events; otherwise, an error will
occur.

isCompressed: Boolean
The value is true if the TLS record is compressed.

isDecrypted: Boolean
The value is true if the ExtraHop system securely decrypted and analyzed the transaction.
Decrypted traffic analysis can expose advanced threats that hide within encrypted traffic.

isEncrypted: Boolean
The value is true if the TLS connection is encrypted.

isPostQuantumKeyAgreement: Boolean
Indicates whether the TLS session was encrypted with a post-quantum cryptography (PQC)
algorithm. PQC is designed to resist attacks from quantum computers.

ExtraHop 25.2 Trigger API Reference 241

isResumed: Boolean
The value is true if the connection is resumed from an existing TLS session and is not a new TLS
session.

Access only on SSL_OPEN, SSL_CLOSE, SSL_ALERT, SSL_HEARTBEAT, or SSL_RENEGOTIATE
events; otherwise, an error will occur.

isStartTLS: Boolean
The value is true if negotiation of the TLS session was initiated by the STARTTLS mechanism of the
protocol.

Access only on SSL_OPEN, SSL_CLOSE, SSL_ALERT, SSL_HEARTBEAT, or SSL_RENEGOTIATE
events; otherwise, an error will occur.

isV2ClientHello: Boolean
The value is true if the Hello record corresponds to SSLv2.

isWeakCipherSuite: Boolean
The value is true if the cipher suite encrypting the TLS session is considered weak. NULL,
anonymous, and EXPORT cipher suites are considered weak, as are suites that encrypt with CBC,
DES, 3DES, MD5, or RC4.

Access only on SSL_OPEN, SSL_CLOSE, SSL_ALERT, SSL_HEARTBEAT, or SSL_RENEGOTIATE
events; otherwise, an error will occur.

ja3Text: String | Null
The complete JA3 string for the client, including the client hello TLS version, accepted ciphers, SSL
extensions, elliptic curves, and elliptic curve formats.

ja3Hash: String | Null
The MD5 hash of the JA3 string for the client.

ja3sText: String | Null
The complete JA3S string for the server, including the server hello SSL version, accepted ciphers, and
TLS extensions.

ja3sHash: String | Null
The MD5 hash of the JA3S string for the server.

ja4Fingerprint: String | Null
The complete JA4 fingerprint for the client, which includes the following information:

• The transport layer (L4) protocol
• The TLS version
• Whether the Server Name Indicator (SNI) extension was specified
• The number of cipher suites
• The number of extensions
• The first Application Layer Protocol Negotiation (ALPN) value listed
• The truncated SHA256 hash of cipher suites
• The truncated SHA256 hash of extensions

keyAgreement: String
The details of the key agreement or exchange algorithm established for the TLS session. For the
RSA algorithm, the property specifies the key size (RSA-2048). For the Elliptic-Curve Diffe-Hellman
Ephemeral (ECDHE) algorithm, the property specifies the key-exchange group (ECDHE-secp256r1).
For post-quantum cryptography (PQC) algorithms, the property specifies that the algorithm includes
PQC (PQC-ECDHE-Kyber-768-X25519).

privateKeyId: String | Null
The string ID associated with the private key if the ExtraHop system is decrypting TLS traffic. The
value is null if the ExtraHop system is not decrypting SSL traffic.

ExtraHop 25.2 Trigger API Reference 242

To find the private key ID in the Administration settings, click Capture from the System
Configuration section, click SSL Decryption, and then click a certificate. The pop-up window displays
all identifiers for the certificate.

record: Object
The record object that can be sent to the configured recordstore through a call to
SSL.commitRecord() on either an SSL_OPEN, SSL_CLOSE, SSL_ALERT, SSL_HEARTBEAT, or
SSL_RENEGOTIATE event.

The event on which the method was called determines which properties the default record object
can contain as displayed in the following table:

Event Available properties

SSL_ALERT • alertCode

• alertLevel

• certificateFingerprint

• certificateIsSelfSigned

• certificateIssuer

• certificateKeySize

• certificateNotAfter

• certificateNotBefore

• certificateSignatureAlgorithm

• certificateSubject

• cipherSuite

• clientAddr

• clientBytes

• clientCertificateRequested

• clientIsExternal

• clientL2Bytes

• clientPkts

• clientPort

• clientRTO

• clientZeroWnd

• isCompressed

• isWeakCipherSuite

• proto

• receiverIsExternal

• reqBytes

• reqL2Bytes

• reqPkts

• reqRTO

• rspBytes

• rspL2Bytes

• rspPkts

• rspRTO

• senderIsExternal

• serverAddr

• serverBytes

• serverIsExternal

• serverL2Bytes

• serverPkts

• serverPort

ExtraHop 25.2 Trigger API Reference 243

Event Available properties
• serverRTO

• serverZeroWnd

• version

SSL_CLOSE • certificateIsSelfSigned

• certificateIssuer

• certificateFingerprint

• certificateKeySize

• certificateNotAfter

• certificateNotBefore

• certificateSignatureAlgorithm

• certificateSubject

• cipherSuite

• clientAddr

• clientBytes

• clientIsExternal

• clientL2Bytes

• clientPkts

• clientPort

• clientRTO

• clientZeroWnd

• isAborted

• isCompressed

• isWeakCipherSuite

• proto

• receiverIsExternal

• reqBytes

• reqPkts

• reqL2Bytes

• reqRTO

• rspBytes

• rspL2Bytes

• rspPkts

• rspRTO

• senderIsExternal

• serverAddr

• serverBytes

• serverIsExternal

• serverL2Bytes

• serverPkts

• serverPort

• serverRTO

• serverZeroWnd

• version

SSL_HEARTBEAT • certificateFingerprint

• certificateIssuer

• certificateKeySize

• certificateNotAfter

ExtraHop 25.2 Trigger API Reference 244

Event Available properties
• certificateNotBefore

• certificateSignatureAlgorithm

• certificateSubject

• cipherSuite

• clientIsExternal

• clientZeroWnd

• heartbeatPayloadLength

• heartbeatType

• isCompressed

• receiverIsExternal

• senderIsExternal

• serverIsExternal

• serverZeroWnd

• version

SSL_OPEN • certificateFingerprint

• certificateIsSelfSigned

• certificateIssuer

• certificateKeySize

• certificateNotAfter

• certificateNotBefore

• certificateSignatureAlgorithm

• certificateSubject

• certificateSubjectAlternativeNames

• cipherSuite

• clientAddr

• clientAlpn

• clientBytes

• clientCertificateRequested

• clientIsExternal

• clientL2Bytes

• clientPkts

• clientPort

• clientRTO

• clientZeroWnd

• handshakeTime

• host

• isAborted

• isCompressed

• isPostQuantumKeyAgreement

• isRenegotiate

• isWeakCipherSuite

• ja3Hash

• ja3sHash

• ja4Fingerprint

• keyAgreement

• proto

• receiverIsExternal

• reqBytes

ExtraHop 25.2 Trigger API Reference 245

Event Available properties
• reqL2Bytes

• reqPkts

• reqRTO

• rspBytes

• rspL2Bytes

• rspPkts

• rspRTO

• senderIsExternal

• serverAddr

• serverAlpn

• serverBytes

• serverIsExternal

• serverL2Bytes

• serverPkts

• serverPort

• serverRTO

• serverZeroWnd

• version

SSL_RENEGOTIATE

Note: The SSL_OPEN record
format is applied to
records committed on
this event.

• certificateFingerprint

• certificateKeySize

• certificateNotAfter

• certificateNotBefore

• certificateSignatureAlgorithm

• certificateSubject

• cipherSuite

• clientAlpn

• clientIsExternal

• handshakeTime

• host

• isAborted

• isCompressed

• receiverIsExternal

• senderIsExternal

• serverAlpn

• serverIsExternal

• version

recordLength: Number
The value of the length field of the TLSPlaintext, TLSCompressed, and TLSCiphertext data
structures as specified in RFC 5246.

Access only on SSL_RECORD, SSL_ALERT, or SSL_HEARTBEAT events; otherwise, an error will
occur.

recordType: Number
The numeric representation of the type field of the TLSPlaintext, TLSCompressed, and
TLSCiphertext data structures as specified in RFC 5246.

Access only on SSL_RECORD, SSL_ALERT, and SSL_HEARTBEAT events; otherwise, an error will
occur.

ExtraHop 25.2 Trigger API Reference 246

roundTripTime: Number
The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK)
packet. The median value is calculated by sampling the RTTs observed since the last SSL_ALERT,
SSL_CLOSE, SSL_HEARTBEAT, SSL_OPEN, SSL_PAYLOAD, SSL_RECORD, or SSL_RENEGOTIATE
event ran. The value is NaN if there are no RTT samples.

Access only on SSL_RECORD or SSL_CLOSE events; otherwise, an error will occur.
serverExtensions: Array | Null

An array of server extension objects that contain the following properties:
id: Number

The ID number of the SSL server extension.
length: Number

The full length of the SSL server extension, expressed in bytes.

Note: An extension might be truncated if the length exceeds the maximum
size. The default is 512 bytes. Truncation has occurred if the
value of this property is smaller than the buffer returned by the
getClientExtensionData() method.

name: String
The name of the TLS server extension, if known. Otherwise, the value indicates that the
extension is unknown. See the table of known TLS extensions in the Methods section.

Access only on SSL_OPEN or SSL_RENEGOTIATE events; otherwise, an error will occur.
serverExtensionsHex: String

A hexadecimal representation of the sorted list of server extensions.

Note: The Generate Random Extensions And Sustain Extensibility (GREASE) values are
removed from the list before encoding.

Access only on SSL_OPEN and SSL_RENEGOTIATE events; otherwise, an error will occur.
serverBytes: Number

The total number of bytes sent by the server since the last SSL_RECORD event ran. Note that this
property does not return the total number of bytes for the entire SSL session.

Access only on SSL_RECORD or SSL_CLOSE events; otherwise, an error will occur.
serverHelloVersion: Number

The version of TLS specified by the server in the server hello packet.
serverL2Bytes: Number

The total number of L2 server bytes observed since the last SSL_RECORD event ran.Note that this
property does not return the total number of bytes for the entire SSL session.

Access only on SSL_RECORD or SSL_CLOSE events; otherwise, an error will occur.
serverPkts: Number

The total number of packets sent by the server since the last SSL_RECORD event ran. Note that this
property does not return the total number of packets for the entire SSL session.

Access only on SSL_RECORD or SSL_CLOSE events; otherwise, an error will occur.
serverSessionId: String

The server session ID byte array, encoded as a string.
serverZeroWnd: Number

The total number of zero windows sent by the server since the last SSL_RECORD event ran. Note
that this property does not return the total number of zero windows for the entire SSL session.

Access only on SSL_RECORD or SSL_CLOSE events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 247

startTLSProtocol: String | Null
The protocol from which the client sent a STARTTLS command.

supportedGroupsHex: String
A hexadecimal representation of the elliptic-curve Diffie-Hellman (ECDH) groups that the client
supports.

Access only on SSL_OPEN and SSL_RENEGOTIATE events; otherwise, an error will occur.
version: Number

The SSL protocol version with the RFC hexadecimal version number, expressed as a decimal.

Version Hex Decimal

SSLv2 0x200 2

SSLv3 0x300 768

TLS 1.0 0x301 769

TLS 1.1 0x302 770

TLS 1.2 0x303 771

TLS 1.3 0x304 772

TCP

The TCP class enables you to access properties and retrieve metrics from TCP events and from FLOW_TICK
and FLOW_TURN events.

The FLOW_TICK and FLOW_TURN events are defined in the Flow section.

Events
TCP_CLOSE

Runs when the TCP connection is shut down by being closed, expired or aborted.
TCP_OPEN

Runs when the TCP connection is first fully established.

The FLOW_CLASSIFY event runs after the TCP_OPEN event to determine the L7 protocol of the
TCP flow.

Note: If a TCP connection stalls for a long period of time, the TCP_OPEN event runs
again when the connection resumes. The following TCP properties and methods
are null when the event runs for a resumed connection:

• getOption

• handshakeTime

• hasECNEcho

• hasECNEcho1

• hasECNEcho2

• initRcvWndSize

• initRcvWndSize1

• initRcvWndSize2

• initSeqNum

• initSeqNum1

• initSeqNum2

ExtraHop 25.2 Trigger API Reference 248

• options

• options1

• options2

TCP_PAYLOAD

Runs when the payload matches the criteria configured in the associated trigger.

Depending on the Flow, the TCP payload can be found in the following properties:

• Flow.client.payload

• Flow.payload1

• Flow.payload2

• Flow.receiver.payload

• Flow.sender.payload

• Flow.server.payload

Additional payload options are available when you create a trigger that runs on this event. See
Advanced trigger options for more information.

Methods
getOption(kind: Number): Object | Null

Returns a TCP option object that matches the specified option kind. For a list of valid option
kinds, see TCP options. Specify the TCP client or the TCP server in the syntax—for example,
TCP.client.getOption(1) or TCP.server.getOption(1).

Applies only to TCP_OPEN events.

Properties
handshakeTime: Number

The amount of time required to negotiate the TCP connection, expressed in milliseconds.

Access only on TCP_OPEN events; otherwise, an error will occur.
hasECNEcho: Boolean

The value is true if the ECN flag is set on a device during the three-way handshake. Specify
the TCP client or the TCP server in the syntax—for example, TCP.client.hasECNEcho or
TCP.server.hasECNEcho.

Access only on TCP_OPEN events; otherwise, an error will occur.
hasECNEcho1: Boolean

The value is true if the ECN flag is set during the three-way handshake associated with one of
two devices in the connection; the other device is represented by hasECNEcho2. The device
represented by hasECNEcho1 remains consistent for the connection.

Access only on TCP_OPEN events; otherwise, an error will occur.
hasECNEcho2: Boolean

The value is true if the ECN flag is set during the three-way handshake associated with one of
two devices in the connection; the other device is represented by hasECNEcho1. The device
represented by hasECNEcho2 remains consistent for the connection.

Access only on TCP_OPEN events; otherwise, an error will occur.
initRcvWndSize: Number

The initial size of the TCP sliding window on a device negotiated during the three-
way handshake. Specify the TCP client or the TCP server in the syntax—for example,
TCP.client.initRcvWndSize or TCP.server.initRcvWndSize.

Access only on TCP_OPEN events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 249

initRcvWndSize1: Number
The initial size of the TCP sliding window negotiated during the three-way handshake associated
with one of two devices in the connection; the other device is represented by initRcvWndSize2.
The device represented by initRcvWndSize1 remains consistent for the connection.

Access only on TCP_OPEN events; otherwise, an error will occur.
initRcvWndSize2: Number

The initial size of the TCP sliding window negotiated during the three-way handshake associated
with one of two devices in the connection; the other device is represented by initRcvWndSize1.
The device represented by initRcvWndSize2 remains consistent for the connection.

Access only on TCP_OPEN events; otherwise, an error will occur.
initSeqNum: Number

The initial sequence number sent from a device during the three-way handshake. Specify
the TCP client or the TCP server in the syntax—for example, TCP.client.initSeqNum or
TCP.server.initSeqNum.

Access only on TCP_OPEN events; otherwise, an error will occur.
initSeqNum1: Number

The initial sequence number during the three-way handshake associated with one of two devices
in the connection; the other device is represented by initSeqNum2. The device represented by
initSeqNum1 remains consistent for the connection.

Access only on TCP_OPEN events; otherwise, an error will occur.
initSeqNum2: Number

The initial sequence number during the three-way handshake associated with one of two devices
in the connection; the other device is represented by initSeqNum1. The device represented by
initSeqNum2 remains consistent for the connection.

Access only on TCP_OPEN events; otherwise, an error will occur.
isAborted: Boolean

The value is true if a TCP flow has been aborted through a TCP reset (RST) before the connection is
shut down. The flow can be aborted by a device. If applicable, specify the device role in the syntax—
for example, TCP.client.isAborted or TCP.server.isAborted.

This condition may be detected in any TCP event and in any impacted L7 events (for example,
HTTP_REQUEST or DB_RESPONSE).

Note: • An L4 abort occurs when a TCP connection is closed with a RST instead of a
graceful shutdown.

• An L7 response abort occurs when a connection closes while in the middle of a
response. This can be due to a RST, a graceful FIN shutdown, or an expiration.

• An L7 request abort occurs when a connection closes in the middle of a
request. This can also be due to a RST, a graceful FIN shutdown, or an
expiration.

isExpired: Boolean
The value is true if the TCP connection expired at the time of the event. If applicable, specify
TCP client or the TCP server in the syntax—for example, TCP.client.isExpired or
TCP.server.isExpired.

Access only on TCP_CLOSE events; otherwise, an error will occur.
isReset: Boolean

The value is true if a TCP reset (RST) was seen while the connection was in the process of being
shut down.

ExtraHop 25.2 Trigger API Reference 250

nagleDelay: Number
The number of Nagle delays associated with a device in the flow. Specify the TCP client or the TCP
server in the syntax—for example, TCP.client.nagleDelay or TCP.server.nagleDelay.

Access only on FLOW_TICK and FLOW_TURN events; otherwise, an error will occur.
nagleDelay1: Number

The number of Nagle delays associated with one of two devices in the flow; the other device is
represented by nagleDelay1. The device represented by nagleDelay2 remains consistent for the
connection.

Access only on FLOW_TICK and FLOW_TURN events; otherwise, an error will occur.
nagleDelay1: Number

The number of Nagle delays associated with one of two devices in the flow; the other device is
represented by nagleDelay2. The device represented by nagleDelay1 remains consistent for the
connection.

Access only on FLOW_TICK and FLOW_TURN events; otherwise, an error will occur.
options: Array

An array of objects representing the TCP options of a device in the initial handshake packets.
Specify the TCP client or the TCP server in the syntax—for example, TCP.client.options or
TCP.server.options. For more information, see the TCP options section below.

Access only on TCP_OPEN events; otherwise, an error will occur.
options1: Array

An array of options representing the TCP options in the initial handshake packets associated with
one of two devices in the connection; the other device is represented by options2. The device
represented by options1 remains consistent for the connection. For more information, For more
information, see the TCP options section below.

Access only on TCP_OPEN events; otherwise, an error will occur.
options2: Array

An array of options representing the TCP options in the initial handshake packets associated with
one of two devices in the connection; the other device is represented by options1. The device
represented by options2 remains consistent for the connection. For more information, For more
information, see the TCP options section below.

Access only on TCP_OPEN events; otherwise, an error will occur.
overlapSegments: Number

The number of non-identical TCP segments, transmitted by a device in the flow, where two or more
TCP segments contain data for the same part of the flow. Specify the TCP client or the TCP server in
the syntax—for example, TCP.client.overlapSegments or TCP.server.overlapSegments.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
overlapSegments1: Number

The number of non-identical TCP segments where two or more segments contain data for the same
part of the flow. The TCP segments are transmitted by one of two devices in the flow; the other
device is represented by overlapSegments2. The device represented by overlapSegments1
remains consistent for the flow.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
overlapSegments2: Number

The number of non-identical TCP segments where two or more segments contain data for the same
part of the flow. The TCP segments are transmitted by one of two devices in the flow; the other
device is represented by overlapSegments1. The device represented by overlapSegments2
remains consistent for the flow.

ExtraHop 25.2 Trigger API Reference 251

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
rcvWndThrottle: Number

The number of receive window throttles sent from a device in the flow. Specify the TCP
client or the TCP server in the syntax—for example, TCP.client.rcvWndThrottle or
TCP.server.rcvWndThrottle.

Access only on FLOW_TICK and FLOW_TURN events; otherwise, an error will occur.
rcvWndThrottle1: Number

The number of receive window throttles sent from one of two devices in the flow; the other device
is represented by rcvWndThrottle2. The device represented by rcvWndThrottle1 remains
consistent for the connection.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
rcvWndThrottle2: Number

The number of receive window throttles sent from one of two devices in the flow; the other device
is represented by rcvWndThrottle1. The device represented by rcvWndThrottle2 remains
consistent for the connection.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
retransBytes: Number

The number of bytes retransmitted over TCP by a client or server device in the flow. Specify
the TCP client or the TCP server in the syntax—for example, TCP.client.retransBytes or
TCP.server.retransBytes.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
retransBytes1: Number

The number of bytes retransmitted over TCP by one of two devices in the flow; the other device is
represented by retransBytes2. The device represented by retransBytes1 remains consistent
for the connection.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
retransBytes2: Number

The number of bytes retransmitted over TCP by one of two devices in the flow; the other device is
represented by retransBytes1. The device represented by retransBytes2 remains consistent
for the connection.

Access only on FLOW_TICK or FLOW_TURN events; otherwise, an error will occur.
zeroWnd: Number

The number of zero windows sent from a device in the flow. Specify the TCP client or the TCP server
in the syntax—for example, TCP.client.zeroWnd or TCP.server.zeroWnd.

Access only on FLOW_TICK and FLOW_TURN events; otherwise, an error will occur.
zeroWnd1: Number

The number of zero windows sent from one of two devices in the flow; the other device is
represented by zeroWnd2. The device represented by zeroWnd1 remains consistent for the
connection.

Access only on FLOW_TICK and FLOW_TURN events; otherwise, an error will occur.
zeroWnd2: Number

The number of zero windows sent from one of two devices in the flow; the other device is
represented by zeroWnd1. The device represented by zeroWnd2 remains consistent for the
connection.

Access only on FLOW_TICK and FLOW_TURN events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 252

TCP options

All TCP Options objects have the following properties:

kind:Number
The TCP option kind number.

Kind Number Meaning

0 End of Option List

1 No-Operation

2 Maximum Segment Size

3 Window Scale

4 SACK Permitted

5 SACK

6 Echo (obsoleted by option 8)

7 Echo Reply (obsoleted by option 8)

8 Timestamps

9 Partial Order Connection Permitted (obsolete)

10 Partial Order Service Profile (obsolete)

11 CC (obsolete)

12 CC.NEW (obsolete)

13 CC.ECHO (obsolete)

14 TCP Alternate Checksum Request (obsolete)

15 TCP Alternate Checksum Data (obsolete)

16 Skeeter

17 Bubba

18 Trailer Checksum Option

19 MD5 Signature Option (obsoleted by option 29)

20 SCPS Capabilities

21 Selective Negative acknowledgments

22 Record Boundaries

23 Corruption experienced

24 SNAP

25 Unassigned (released 2000-12-18)

26 TCP Compression Filter

27 Quick-Start Response

28 User Timeout Option (also, other known authorized
use)

29 TCP Authentication Option (TCP-AO)

ExtraHop 25.2 Trigger API Reference 253

Kind Number Meaning

30 Multipath TCP (MPTCP)

31 Reserved (known authorized used without proper
IANA assignment)

32 Reserved (known authorized used without proper
IANA assignment)

33 Reserved (known authorized used without proper
IANA assignment)

34 TCP Fast Open Cookie

35-75 Reserved

76 Reserved (known authorized used without proper
IANA assignment)

77 Reserved (known authorized used without proper
IANA assignment)

78 Reserved (known authorized used without proper
IANA assignment)

79-252 Reserved

253 RFC3692-style Experiment 1 (also improperly used
for shipping products)

254 RFC3692-style Experiment 2 (also improperly used
for shipping products)

name: String
The name of the TCP option.

The following list contains the names of common TCP options and their specific properties:

Maximum Segment Size (name 'mss', option kind 2)

value: Number
The maximum segment size.

Window Scale (name 'wscale', kind 3)

value: Number
The window scale factor.

Selective acknowledgment Permitted (name 'sack-permitted', kind 4)
No additional properties. Its presence indicates that the selective acknowledgment option was
included in the SYN.

Timestamp (name 'timestamp', kind 8)

tsval: Number
The TSVal field for the option.

tsecr: Number
The TSecr field for the option.

Quickstart Response (name 'quickstart-rsp', kind 27)

rate-request: Number
The requested rate for transport, expressed in bytes per second.

ExtraHop 25.2 Trigger API Reference 254

ttl-diff: Number
The TTLDif.

qs-nonce: Number
The QS Nonce.

Akamai Address (name 'akamai-addr', kind 28)

value: IPAddr
The IP Address of the Akamai server.

User Timeout (name 'user-timeout', kind 28)

value: Number
The user timeout.

Authentication (name 'tcp-ao', kind 29)

keyId property: Number
The key id for the key in use.

rNextKeyId: Number
The key id for the "receive next" key id.

mac: Buffer
The message authentication code.

Multipath (name 'mptcp', kind 30)

value: Buffer
The multipath value.

Note: The Akamai address and user timeout options are differentiated by the
length of the option.

The following is an example of TCP options:

if (TCP.client.options != null) {

 var optMSS = TCP.client.getOption(2)

 if (optMSS && (optMSS.value > 1460)) {
 Network.metricAddCount('large_mss', 1);
 Network.metricAddDetailCount('large_mss_by_client_ip',
 Flow.client.ipaddr + " " + optMSS.value,
 1);
 }

}

Telnet

The Telnet class enables you to store metrics and access properties on TELNET_MESSAGE events.

Events
TELNET_MESSAGE

Runs on a telnet command or line of data from the telnet client or server.

Methods
commitRecord(): void

Sends a record to the configured recordstore on an TELNET_MESSAGE event.

ExtraHop 25.2 Trigger API Reference 255

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
command: String

The command type. The value is null if the event was run due to a line of data being sent.

The following values are valid:

• Abort

• Abort Output

• Are You There

• Break

• Data Mark

• DO

• DON'T

• End of File

• End of Record

• Erase Character

• Erase Line

• Go Ahead

• Interrupt Process

• NOP

• SB

• SE

• Suspend

• WILL

• WON'T

line: String
A line of the data sent by the client or server. Terminal escape sequences and special characters are
filtered out. Cursor movement and line editing are not simulated except for backspace characters.

option: String
The option being negotiated. The value is null if the option is invalid. The following values are valid:

• 3270-REGIME

• AARD

• ATCP

• AUTHENTICATION

• BM

• CHARSET

• COM-PORT-OPTION

• DET

• ECHO

• ENCRYPT

• END-OF-RECORD

• ENVIRON

• EXPOPL

• EXTEND-ASCII

• FORWARD-X

• GMCP

ExtraHop 25.2 Trigger API Reference 256

• KERMIT

• LINEMODE

• LOGOUT

• NAOCRD

• NAOFFD

• NAOHTD

• NAOHTS

• NAOL

• NAOLFD

• NAOP

• NAOVTD

• NAOVTS

• NAWS

• NEW-ENVIRON

• OUTMRK

• PRAGMA-HEARTBEAT

• PRAGMA-LOGON

• RCTE

• RECONNECT

• REMOTE-SERIAL-PORT

• SEND-LOCATION

• SEND-URL

• SSPI-LOGON

• STATUS

• SUPDUP

• SUPDUP-OUTPUT

• SUPPRESS-GO-AHEAD

• TERMINAL-SPEED

• TERMINAL-TYPE

• TIMING-MARK

• TN3270E

• TOGGLE-FLOW-CONTROL

• TRANSMIT-BINARY

• TTYLOC

• TUID

• X-DISPLAY-LOCATION

• X.3-PAD

• XAUTH

optionData: Buffer
For option subnegotiations (the SB command), the raw, option-specific data sent. The value is null
if the command is not SB.

record: Object
The record object that can be sent to the configured recordstore through a call to
Telnet.commitRecord() on an TELNET_MESSAGE event.

The default record object can contain the following properties:

• clientIsExternal

• command

• option

• receiverBytes

ExtraHop 25.2 Trigger API Reference 257

• receiverIsExternal

• receiverL2Bytes

• recieverPkts

• receiverRTO

• receiverZeroWnd

• roundTripTime

• senderBytes

• senderIsExternal

• senderL2Bytes

• senderPkts

• senderRTO

• senderZeroWnd

• serverIsExternal

receiverBytes: Number
The number of application-level bytes from the receiver.

receiverL2Bytes: Number
The number of L2 bytes from the receiver.

receiverPkts: Number
The number of packets from the receiver.

receiverRTO: Number
The number of retransmission timeouts (RTOs) from the receiver.

receiverZeroWnd: Number
The number of zero windows sent by the receiver.

roundTripTime: Number
The median round trip time (RTT), expressed in milliseconds. An RTT is the time it took for a device
to send a single TCP packet and receive an immediate corresponding acknowledgment (ACK) packet.
The median value is calculated by sampling the RTTs observed since the last TELNET_MESSAGE
event ran. The value is NaN if there are no RTT samples.

senderBytes: Number
The number of application-level bytes from the sender.

senderL2Bytes: Number
The number of L2 bytes from the sender.

senderPkts: Number
The number of packets from the sender.

senderRTO: Number
The number of retransmission timeouts (RTOs) from the sender.

senderZeroWnd: Number
The number of zero windows sent by the sender.

TFTP

The TFTP (Trivial File Transfer Protocol) class enables you to store metrics and access properties on
TFTP_REQUEST and TFTP_RESPONSE events.

Events
TFTP_REQUESTS

Runs on every TFTP request processed by the device.

ExtraHop 25.2 Trigger API Reference 258

TFTP_RESPONSE

Runs on every TFTP response processed by the device.

Methods
commitRecord(): void

Sends a record to the configured recordstore on a TFTP_RESPONSE event. Record commits on
TFTP_REQUEST events are not supported.

To view the default properties committed to the record object, see the record property below.

For built-in records, each unique record is committed only once, even if the commitRecord()
method is called multiple times for the same unique record.

Properties
blocks: Number

The number of data blocks written or read.

Access only on TFTP_RESPONSE events; otherwise, an error will occur.
error: String | null

The detailed error message recorded by the ExtraHop system.

Access only on TFTP_RESPONSE events; otherwise, an error will occur.
fileComplete: Boolean

If the value is false, only part of the file was transferred, either because the client timed out during
a write operation or the server timed out during a read operation.

Access only on TFTP_RESPONSE events; otherwise, an error will occur.
filename: String

The name of the file transferred.
mode: String

The mode that the file was transferred with. The following values are valid:

• netascii

• octet

• mail

operation: String
The TFTP operation. The following values are valid:

• READ

• WRITE

payload: Buffer
The Buffer object that contains the raw payload bytes of the first data block transferred. The
maximum size of a block is 512 bytes.

payloadMediaType: String
The type of file transferred.

Access only on TFTP_RESPONSE events; otherwise, an error will occur.
payloadSHA256: String

The hexadecimal representation of the SHA-256 hash of the payload. The string contains no
delimiters, as shown in the following example:

468c6c84db844821c9ccb0983c78d1cc05327119b894b5ca1c6a1318784d3675

Access only on TFTP_RESPONSE events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 259

size: Number
The size of the file transferred, expressed in bytes.

Access only on TFTP_RESPONSE events; otherwise, an error will occur.

Turn

Turn is a class that enables you to store metrics and access properties available on FLOW_TURN events.

The FLOW_TURN event is defined in the Flow section.

Properties
clientBytes: Number

The total number of bytes sent by the client since the last FLOW_TURN event ran.
clientTransferTime: Number

The client transfer time, expressed in milliseconds.
processingTime: Number

The time elapsed between when the client transfers the request to the server and when the server
begins to transfer the response back to the client, expressed in milliseconds.

reqSize: Number
The size of the request payload, expressed in bytes.

reqTransferTime: Number
The request transfer time, expressed in milliseconds. If the request is contained in a single packet,
the transfer time is zero. If the request spans multiple packets, the value is the amount of time
between detection of the first request packet and detection of the last packet by the ExtraHop
system. A high value might indicate a large request or a network delay. The value is NaN if there is no
valid measurement, or if the timing is invalid.

rspSize: Number
The size of the response payload, expressed in bytes.

rspTransferTime: Number
The response transfer time, expressed in milliseconds. If the response is contained in a single packet,
the transfer time is zero. If the response spans multiple packets, the value is the amount of time
between detection of the first response packet and detection of the last packet by the ExtraHop
system. A high value might indicate a large response or a network delay. The value is NaN if there is
no valid measurement, or if the timing is invalid.

serverBytes: Number
The total number of bytes sent by the server since the last SSL_RECORD event ran.

serverTransferTime: Number
The server transfer time, expressed in milliseconds.

sourceDevice: Device
The source device object. See the Device class for more information.

thinkTime: Number
The time elapsed between the server having transferred the response to the client and the client
transferring a new request to the server, expressed in milliseconds. The value is NaN if there is no
valid measurement.

ExtraHop 25.2 Trigger API Reference 260

UDP

The UDP class enables you to access properties and retrieve metrics from UDP events and from
FLOW_TICK and FLOW_TURN events.

The FLOW_TICK and FLOW_TURN events are defined in the Flow section.

Events
UDP_PAYLOAD

Runs when the payload matches the criteria configured in the associated trigger.

Depending on the Flow, the UDP payload can be found in the following properties:

• Flow.client.payload

• Flow.payload1

• Flow.payload2

• Flow.receiver.payload

• Flow.sender.payload

• Flow.server.payload

Additional payload options are available when you create a trigger that runs on this event. See
Advanced trigger options for more information.

WebSocket

The WebSocket class enables you to access properties on WEBSOCKET_OPEN, WEBSOCKET_CLOSE, and
WEBSOCKET_MESSAGE events.

Events
WEBSOCKET_OPEN

Runs when a successful handshake has been observed.
WEBSOCKET_CLOSE

Runs when both close frames are observed, or when the underlying TCP connection is closed.
WEBSOCKET_MESSAGE

Runs when all frames of a text or binary message have been observed.

Properties
clientBytes: Number

The total number of bytes sent by the client during the entire WebSockets session.

Access only on WEBSOCKET_MESSAGE events; otherwise, an error will occur.
clientL2Bytes: Number

The total number of L2 client bytes observed during the entire WebSockets session.

Access only on WEBSOCKET_MESSAGE events; otherwise, an error will occur.
clientPkts: Number

The total number of packets sent by the client during the entire WebSockets session.

Access only on WEBSOCKET_MESSAGE events; otherwise, an error will occur.
clientRTO: Number

The total number of client retransmission timeouts (RTOs) observed during the WebSockets session.

Access only on WEBSOCKET_MESSAGE events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 261

clientZeroWnd: Number
The total number of zero windows sent by the client during the entire WebSockets session.

Access only on WEBSOCKET_MESSAGE events; otherwise, an error will occur.
closeReason: String

The text message included in the first observed close frame that describes the reason the connection
was closed. The value is null if the frame does not contain this information.

Access only on WEBSOCKET_CLOSE events; otherwise, an error will occur.
host: String

The host provided in the handshake request from the client. The value is null if no host is provided.

Access only on WEBSOCKET_OPEN events; otherwise, an error will occur.
isClientClose: Boolean

The value is true if the initial close frame was sent by the client.

Access only on WEBSOCKET_CLOSE events; otherwise, an error will occur.
isEncrypted: Boolean

The value is true if the WebSocket connection is TLS-encrypted.
isMasked: Boolean

The value is true if the frames of the WebSocket message are masked.

Access only on WEBSOCKET_MESSAGE events; otherwise, an error will occur.
isServerClose: Boolean

The value is true if the initial close frame was sent by the server. The value is false if the
connection was terminated abnormally.

Access only on WEBSOCKET_CLOSE events; otherwise, an error will occur.
msg: Buffer

The Buffer object containing the WebSocket message. If the message is compressed, the buffer
contains the decompressed message. The buffer is null if the contents exceed the maximum length.

Access only on WEBSOCKET_MESSAGE events; otherwise, an error will occur.
msgLength: Number

The length of the message, expressed in bytes. If the message is compressed, the length reflects the
total length of the decompressed message, even if the message exceeds the maximum length.

Access only on WEBSOCKET_MESSAGE events; otherwise, an error will occur.
msgType: String

The type of WebSocket message frame. Valid values are TEXT or BINARY.

Access only on WEBSOCKET_MESSAGE events; otherwise, an error will occur.
origin: String

The origin URL provided in the handshake request initiated by the client.

Access only on WEBSOCKET_OPEN events; otherwise, an error will occur.
rawMsgLength: Number

The length of the raw message as it was observed, expressed in bytes. If the message is compressed,
this property reflects the length of the compressed message.

Access only on WEBSOCKET_MESSAGE events; otherwise, an error will occur.
serverBytes: Number

The total number of bytes sent by the server during the entire WebSockets session.

Access only on WEBSOCKET_MESSAGE events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 262

serverL2Bytes: Number
The total number of L2 server bytes observed during the entire WebSockets session.

Access only on WEBSOCKET_MESSAGE events; otherwise, an error will occur.
serverPkts: Number

The total number of packets sent by the server during the entire WebSockets session.

Access only on WEBSOCKET_MESSAGE events; otherwise, an error will occur.
serverRTO: Number

The total number of server retransmission timeouts (RTOs) observed during the WebSockets
session.

Access only on WEBSOCKET_MESSAGE events; otherwise, an error will occur.
serverZeroWnd: Number

The total number of zero windows sent by the server during the entire WebSockets session.

Access only on WEBSOCKET_MESSAGE events; otherwise, an error will occur.
statusCode: Number

The status code that represents the reason the connection was closed, as defined in RFC 6455.

The value is NO_STATUS_RECVD (1005) if the initial close frame does not include a status code. The
value is NaN if connection was terminated abnormally.

Access only on WEBSOCKET_CLOSE events; otherwise, an error will occur.
uri: String

The URI provided in the handshake request initiated by the client.

Access only on WEBSOCKET_OPEN events; otherwise, an error will occur.

WSMAN

The WSMAN class enables you to store metrics and access properties on WSMAN_REQUEST and
WSMAN_RESPONSE events. Web Services-Management (WSMAN) and the Microsoft implementation
Windows Remote Management (WinRM) are protocols that enable devices to exchange management
information on a network.

Events
WSMAN_REQUEST

Runs on every WSMAN_REQUEST processed by the device.
WSMAN_RESPONSE

Runs on every WSMAN_RESPONSE processed by the device.

Methods
commitRecord():void

Sends a record to the configured recordstore on either a WSMAN_REQUEST or WSMAN_RESPONSE
event. To view the default properties committed on each event, see the record property below.

If the commitRecord() method is called on an WSMAN_REQUEST event, the record is not created
until the WSMAN_RESPONSE event runs. If the commitRecord() method is called on both the
WSMAN_REQUEST and the corresponding WSMAN_RESPONSE, only one record is created for request
and response, even if the commitRecord() method is called multiple times on the same trigger
events.

ExtraHop 25.2 Trigger API Reference 263

Properties
commandLine: String | Null

The full command line specified in the WSMAN request. If the WSMAN request did not specify a
command line, the value is null.

encryptionProtocol: String
The protocol that the transaction is encrypted with.

isEncrypted: Boolean
The value is true if the transaction is over secure HTTP.

isDecrypted: Boolean
The value is true if the ExtraHop system securely decrypted and analyzed the transaction.
Decrypted traffic analysis can expose advanced threats that hide within encrypted traffic.

operationId: String
The unique identifier of the operation.

payload: Buffer
A buffer object containing the XML message envelope. Messages longer than the maximum size
are truncated. The maximum size is configured in the WSMAN profile in the running config. The
following running config example changes the maximum message size from its default of 1024 bytes
to 4096:

"capture": {
 "app_proto": {
 "wsman": {
 "payload_max_size": 4096
 }
 }
}

record: Object
The record object that can be sent to the configured recordstore through a call to
WSMAN.commitRecord().

The default record object can contain the following properties:

• clientAddr

• clientIsExternal

• clientPort

• serverAddr

• serverPort

• proto

• timestamp

• user

• vlan

• operationId

• receiverIsExternal

• reqAction

• reqResourceURI

• rspAction

• rspResourceURI

• senderIsExternal

• sequenceId

• serverIsExternal

Access the record object only on WSMAN_RESPONSE events; otherwise, an error will occur.

ExtraHop 25.2 Trigger API Reference 264

reqAction: String
The action requested by the client to be performed by the resource specified in the resourceURI.

Access only on WSMAN_REQUEST events; otherwise, an error will occur.
reqCommand: String | null

The command specified in the request. If no command is specified, the value is null.
reqResourceURI: String

The Uniform Resource Identifier (URI) of the resource that performs an action.
rspAction: String

The server response to the action requested by the client.

Access only on WSMAN_RESPONSE events; otherwise, an error will occur.
rspResourceURI: String

The Uniform Resource Identifier (URI) of the resource that performs an action.
sequenceId: String

The string representation of a 64-bit integer that identifies a message in an operation.
user: String

The username of the account that sent the request.

ExtraHop 25.2 Trigger API Reference 265

Open data stream classes
The Trigger API classes in this section enable you to send data to a third-party syslog, database, or server
through an open data stream (ODS) you have configured in the Administration settings.

Class Description

Remote.HTTP Enables you to submit HTTP request data to a
remote server through REST API endpoints.

Remote.Kafka Enables you to submit message data to remote a
Kafka server.

Remote.MongoDB Enables you to insert, remove, and update
document collections to a remote MongoDB
database.

Remote.Raw Enables you to submit raw data to a remote server
through a TCP or UDP port.

Remote.Syslog Enables you to send syslog data to a remote server.

Remote.HTTP

The Remote.HTTP class enables you to submit HTTP request data to an HTTP open data stream (ODS)
target and provides access to HTTP REST API endpoints.

You must first configure an HTTP ODS target from the Administration settings, which requires system and
access administration privileges. For configuration information, see the Open Data Streams section in the
Sensor Administration Guide .

Methods
delete

Submits an HTTP REST delete request to a configured HTTP open data stream.
Syntax:

Remote.HTTP("name").delete({path: "path", headers: {header:
 "header"},
payload: "payload"})

Remote.HTTP.delete({path: "path", headers: {header: "header"},
 payload: "payload"})

Parameters:

name: String
The name of the ODS target that requests are sent to. If this field is not specified, the
name is set to default.

options: Object
The options object has the following properties:
path: String

The string specifying the request path.

https://docs.extrahop.com/25.2/open-data-streams
https://docs.extrahop.com/25.2/eh-admin-ui-guide

ExtraHop 25.2 Trigger API Reference 266

headers: Object
The optional object specifying the request headers. The following headers are
restricted and will result in an error if specified:

• Connection

• Authorization

• Proxy-Connection

• Content-Length

• X-Forwarded-For

• Transfer-Encoding

Note: Authorization headers must be specified by either a built-
in authentication method, such as Amazon Web Services, or
through the Additional HTTP Header field in the Open Data
Streams configuration window in the Administration settings.

Headers configured in a trigger take precedence over an entry in the Additional
HTTP Header field, which is located in the Open Data Streams configuration
window in the Administration settings. For example, if the Additional HTTP
Header field specifies Content-Type: text/plain, but a trigger script on
the same ODS target specifies Content-Type: application/json, then
Content-Type: application/json is included in the HTTP request.

You can compress the outgoing HTTP requests with the Content- Encoding
header.

'Content-Encoding': 'gzip'

The following values are supported for this compression header:

• gzip

• deflate

payload: String | Buffer
The optional string or Buffer specifying the request payload.

Return Values:
Returns true if the request is queued, otherwise returns false.

get

Submits an HTTP REST get request to a configured HTTP open data stream.
Syntax:

Remote.HTTP("name").get({path: "path", headers: {header:
 "header"},
payload: "payload", enableResponseEvent: "enableResponseEvent",
 context: "context"})

Remote.HTTP.get({path: "path", headers: {header: "header"},
 payload: "payload", enableResponseEvent: "enableResponseEvent",
 context: "context"})

Parameters:

name: String
The name of the ODS target that requests are sent to. If this field is not specified, the
name is set to default.

options: Object
The options object has the following properties:

ExtraHop 25.2 Trigger API Reference 267

path: String
The string specifying the request path.

headers: Object
The optional object specifying the request headers. The following headers are
restricted and will result in an error if specified:

• Connection

• Authorization

• Proxy-Connection

• Content-Length

• X-Forwarded-For

• Transfer-Encoding

Note: Authorization headers must be specified by either a built-
in authentication method, such as Amazon Web Services, or
through the Additional HTTP Header field in the Open Data
Streams configuration window in the Administration settings.

Headers configured in a trigger take precedence over an entry in the Additional
HTTP Header field, which is located in the Open Data Streams configuration
window in the Administration settings. For example, if the Additional HTTP
Header field specifies Content-Type: text/plain, but a trigger script on
the same ODS target specifies Content-Type: application/json, then
Content-Type: application/json is included in the HTTP request.

You can compress the outgoing HTTP requests with the Content- Encoding
header.

'Content-Encoding': 'gzip'

The following values are supported for this compression header:

• gzip

• deflate

payload: String | Buffer
The optional string or Buffer specifying the request payload.

enableResponseEvent: Boolean
Enables a trigger to run on the HTTP response that is sent by the ODS target by
creating a REMOTE_RESPONSE event.

Important: Processing a large number of HTTP responses can affect
trigger performance and efficiency. We recommend that
you enable this option only if necessary.

context: Object | String | Number | Boolean | null
An optional object that is sent to the trigger that is running on the HTTP
response from the ODS target. You can access information stored in the object
by specifying the Remote.response.context property.

Return Values:
Returns true if the request is queued, otherwise returns false.

patch

Submits an HTTP REST patch request to a configured HTTP open data stream.
Syntax:

Remote.HTTP("name").patch({path: "path", headers: {header:
 "header"},

ExtraHop 25.2 Trigger API Reference 268

payload: "payload", enableResponseEvent: "enableResponseEvent",
 context: "context"})

Remote.HTTP.patch({path: "path", headers: {header: "header"},
 payload: "payload", enableResponseEvent: "enableResponseEvent",
 context: "context"})

Parameters:

name: String
The name of the ODS target that requests are sent to. If this field is not specified, the
name is set to default.

options: Object
The options object has the following properties:
path: String

The string specifying the request path.
headers: Object

The optional object specifying the request headers. The following headers are
restricted and will result in an error if specified:

• Connection

• Authorization

• Proxy-Connection

• Content-Length

• X-Forwarded-For

• Transfer-Encoding

Note: Authorization headers must be specified by either a built-
in authentication method, such as Amazon Web Services, or
through the Additional HTTP Header field in the Open Data
Streams configuration window in the Administration settings.

Headers configured in a trigger take precedence over an entry in the Additional
HTTP Header field, which is located in the Open Data Streams configuration
window in the Administration settings. For example, if the Additional HTTP
Header field specifies Content-Type: text/plain, but a trigger script on
the same ODS target specifies Content-Type: application/json, then
Content-Type: application/json is included in the HTTP request.

You can compress the outgoing HTTP requests with the Content- Encoding
header.

'Content-Encoding': 'gzip'

The following values are supported for this compression header:

• gzip

• deflate

payload: String | Buffer
The optional string or Buffer specifying the request payload.

enableResponseEvent: Boolean
Enables a trigger to run on the HTTP response that is sent by the ODS target by
creating a REMOTE_RESPONSE event.

Important: Processing a large number of HTTP responses can affect
trigger performance and efficiency. We recommend that
you enable this option only if necessary.

ExtraHop 25.2 Trigger API Reference 269

context: Object | String | Number | Boolean | null
An optional object that is sent to the trigger that is running on the HTTP
response from the ODS target. You can access information stored in the object
by specifying the Remote.response.context property.

Return Values:
Returns true if the request is queued, otherwise returns false.

post

Submits an HTTP REST post request to a configured HTTP open data stream.
Syntax:

Remote.HTTP("name").post({path: "path", headers: {header:
 "header"},
payload: "payload", enableResponseEvent: "enableResponseEvent",
 context: "context"})

Remote.HTTP.post({path: "path", headers: {header: "header"},
 payload: "payload", enableResponseEvent: "enableResponseEvent",
 context: "context"})

Parameters:

name: String
The name of the ODS target that requests are sent to. If this field is not specified, the
name is set to default.

options: Object
The options object has the following properties:
path: String

The string specifying the request path.
headers: Object

The optional object specifying the request headers. The following headers are
restricted and will result in an error if specified:

• Connection

• Authorization

• Proxy-Connection

• Content-Length

• X-Forwarded-For

• Transfer-Encoding

Note: Authorization headers must be specified by either a built-
in authentication method, such as Amazon Web Services, or
through the Additional HTTP Header field in the Open Data
Streams configuration window in the Administration settings.

Headers configured in a trigger take precedence over an entry in the Additional
HTTP Header field, which is located in the Open Data Streams configuration
window in the Administration settings. For example, if the Additional HTTP
Header field specifies Content-Type: text/plain, but a trigger script on
the same ODS target specifies Content-Type: application/json, then
Content-Type: application/json is included in the HTTP request.

You can compress the outgoing HTTP requests with the Content- Encoding
header.

'Content-Encoding': 'gzip'

ExtraHop 25.2 Trigger API Reference 270

The following values are supported for this compression header:

• gzip

• deflate

payload: String | Buffer
The optional string or Buffer specifying the request payload.

enableResponseEvent: Boolean
Enables a trigger to run on the HTTP response that is sent by the ODS target by
creating a REMOTE_RESPONSE event.

Important: Processing a large number of HTTP responses can affect
trigger performance and efficiency. We recommend that
you enable this option only if necessary.

context: Object | String | Number | Boolean | null
An optional object that is sent to the trigger that is running on the HTTP
response from the ODS target. You can access information stored in the object
by specifying the Remote.response.context property.

Return Values:
Returns true if the request is queued, otherwise returns false.

put

Submits an HTTP REST put request to a configured HTTP open data stream.
Syntax:

Remote.HTTP("name").put({path: "path", headers: {header:
 "header"},
payload: "payload", enableResponseEvent: "enableResponseEvent",
 context: "context"})

Remote.HTTP.put({path: "path", headers: {header: "header"},
 payload: "payload", enableResponseEvent: "enableResponseEvent",
 context: "context"})

Parameters:

name: String
The name of the ODS target that requests are sent to. If this field is not specified, the
name is set to default.

options: Object
The options object has the following properties:
path: String

The string specifying the request path.
headers: Object

The optional object specifying the request headers. The following headers are
restricted and will result in an error if specified:

• Connection

• Authorization

• Proxy-Connection

• Content-Length

• X-Forwarded-For

• Transfer-Encoding

Note: Authorization headers must be specified by either a built-
in authentication method, such as Amazon Web Services, or

ExtraHop 25.2 Trigger API Reference 271

through the Additional HTTP Header field in the Open Data
Streams configuration window in the Administration settings.

Headers configured in a trigger take precedence over an entry in the Additional
HTTP Header field, which is located in the Open Data Streams configuration
window in the Administration settings. For example, if the Additional HTTP
Header field specifies Content-Type: text/plain, but a trigger script on
the same ODS target specifies Content-Type: application/json, then
Content-Type: application/json is included in the HTTP request.

You can compress the outgoing HTTP requests with the Content- Encoding
header.

'Content-Encoding': 'gzip'

The following values are supported for this compression header:

• gzip

• deflate

payload: String | Buffer
The optional string or Buffer specifying the request payload.

enableResponseEvent: Boolean
Enables a trigger to run on the HTTP response that is sent by the ODS target by
creating a REMOTE_RESPONSE event.

Important: Processing a large number of HTTP responses can affect
trigger performance and efficiency. We recommend that
you enable this option only if necessary.

context: Object | String | Number | Boolean | null
An optional object that is sent to the trigger that is running on the HTTP
response from the ODS target. You can access information stored in the object
by specifying the Remote.response.context property.

Return Values:
Returns true if the request is queued, otherwise returns false.

request

Submits an HTTP REST request to a configured HTTP open data stream.
Syntax:

Remote.HTTP("name").request("method", {path: "path", headers:
 {header: "header"},
payload: "payload", enableResponseEvent: "enableResponseEvent",
 context: "context"})

Remote.HTTP.request("method", {path: "path", headers: {header:
 "header"},
payload: "payload", enableResponseEvent: "enableResponseEvent",
 context: "context"})

Parameters:

name: String
The name of the ODS target that requests are sent to. If this field is not specified, the
name is set to default.

method: String
String that specifies the HTTP method.

ExtraHop 25.2 Trigger API Reference 272

• GET

• HEAD

• POST

• PUT

• DELETE

• TRACE

• OPTIONS

• CONNECT

• PATCH

options: Object
The options object has the following properties:
path: String

The string specifying the request path.
headers: Object

The optional object specifying the request headers. The following headers are
restricted and will result in an error if specified:

• Connection

• Authorization

• Proxy-Connection

• Content-Length

• X-Forwarded-For

• Transfer-Encoding

Note: Authorization headers must be specified by either a built-
in authentication method, such as Amazon Web Services, or
through the Additional HTTP Header field in the Open Data
Streams configuration window in the Administration settings.

Headers configured in a trigger take precedence over an entry in the Additional
HTTP Header field, which is located in the Open Data Streams configuration
window in the Administration settings. For example, if the Additional HTTP
Header field specifies Content-Type: text/plain, but a trigger script on
the same ODS target specifies Content-Type: application/json, then
Content-Type: application/json is included in the HTTP request.

You can compress the outgoing HTTP requests with the Content- Encoding
header.

'Content-Encoding': 'gzip'

The following values are supported for this compression header:

• gzip

• deflate

payload: String | Buffer
The optional string or Buffer specifying the request payload.

enableResponseEvent: Boolean
Enables a trigger to run on the HTTP response that is sent by the ODS target by
creating a REMOTE_RESPONSE event.

Important: Processing a large number of HTTP responses can affect
trigger performance and efficiency. We recommend that
you enable this option only if necessary.

ExtraHop 25.2 Trigger API Reference 273

context: Object | String | Number | Boolean | null
An optional object that is sent to the trigger that is running on the HTTP
response from the ODS target. You can access information stored in the object
by specifying the Remote.response.context property.

Return Values:
Returns true if the request is queued, otherwise returns false.

Helper methods

The following helper methods are available for common HTTP methods.

• Remote.HTTP.delete

• Remote.HTTP.get

• Remote.HTTP.patch

• Remote.HTTP.post

• Remote.HTTP.put

Syntax:

Remote.HTTP("name").delete({path: "path", headers: {header: "header"},
payload: "payload", enableResponseEvent: "enableResponseEvent",
 context: "context"})

Remote.HTTP.delete({path: "path", headers: {header: "header"}, payload:
 "payload", enableResponseEvent: "enableResponseEvent", context:
 "context"})

Remote.HTTP("name").get({path: "path", headers: {header: "header"},
payload: "payload", enableResponseEvent: "enableResponseEvent",
 context: "context"})

Remote.HTTP.get({path: "path", headers: {header: "header"}, payload:
 "payload", enableResponseEvent: "enableResponseEvent", context:
 "context"})

Remote.HTTP("name").patch({path: "path", headers: {header: "header"},
payload: "payload", enableResponseEvent: "enableResponseEvent",
 context: "context"})

Remote.HTTP.patch({path: "path", headers: {header: "header"}, payload:
 "payload", enableResponseEvent: "enableResponseEvent", context:
 "context"})

Remote.HTTP("name").post({path: "path", headers: {header: "header"},
payload: "payload", enableResponseEvent: "enableResponseEvent",
 context: "context"})

Remote.HTTP.post({path: "path", headers: {header: "header"}, payload:
 "payload", enableResponseEvent: "enableResponseEvent", context:
 "context"})

Remote.HTTP("name").put({path: "path", headers: {header: "header"},

ExtraHop 25.2 Trigger API Reference 274

payload: "payload", enableResponseEvent: "enableResponseEvent",
 context: "context"})

Remote.HTTP.put({path: "path", headers: {header: "header"}, payload:
 "payload", enableResponseEvent: "enableResponseEvent", context:
 "context"})

Return values:
Returns true if the request is queued, otherwise returns false.

Examples
HTTP GET

The following example will issue an HTTP GET request to the HTTP configuration called
"my_destination" and a path that is the URI, including query string variables, that you want the
request to be sent to.

Remote.HTTP("my_destination").get({ path: "/?
example=example1&example2=my_data" });

HTTP POST

The following example will issue an HTTP POST request to the HTTP configuration called
"my_destination", the path that is the URI you want the request to be sent to and a payload. The
payload can be data similar to what an HTTP client would send, a JSON blob, XML, or whatever else
you want to send.

Remote.HTTP("my_destination").post({ path: "/", payload: "data I want
 to
send" });

Custom HTTP Headers
The following example defines a Javascript object with keys to represent the header names and their
corresponding values and provide that in a call as the value for the headers key.

var my_json = { example: "my_data", example1: 42, example2: false };
var headers = { "Content-Type": "application/json" };
Remote.HTTP("my_destination").post({ path: "/", headers: headers,
 payload:
JSON.stringify(my_json) });

Trigger Examples

• Example: Send data to Elasticsearch with Remote.HTTP
• Example: Send data to Azure with Remote.HTTP

Remote.Kafka

The Remote.Kafka class enables you to submit message data to a Kafka server through a Kafka open data
stream (ODS).

You must first configure a Kafka ODS target from the Administration settings, which requires system and
access administration privileges. For configuration information, see the Open Data Streams section in the
Sensor Administration Guide .

https://docs.extrahop.com/25.2/open-data-streams
https://docs.extrahop.com/25.2/eh-admin-ui-guide

ExtraHop 25.2 Trigger API Reference 275

Methods
send

Sends an array of messages to a single topic with an option to indicate which Kafka partition the
messages will be sent to.
Syntax:

Remote.Kafka.send({"topic": "topic", "messages":[messages],
"partition": partition})

Remote.Kafka("name").send({"topic": "topic", "messages":
[messages],
"partition": partition})

Parameters:

name: String
The name of the ODS target that requests are sent to. If this field is not specified, the
name is set to default.

topic: String
A string corresponding to the topic associated with the Kafka send method. The topic
string has the following restrictions:

• The string length must be between 1 and 249 characters.
• The string supports only alphanumeric characters and the following symbols: "-",

"_", or ".".
• The string cannot be "." or "..".

messages: Array
An optional array of messages to be sent. An element in this array cannot be an array
itself.

partition: Number
An optional non-negative integer corresponding to the Kafka partition the messages
will be sent to. The send action will fail silently if the number provided exceeds the
number of partitions on the Kafka cluster associated with the given target. This value
is ignored unless Manual Partitioning is selected as the partitioning strategy when you
configured the open data stream in the Administration settings.

Return values:
None

Examples:

Remote.Kafka.send({"topic": "my_topic", "messages": ["hello
 world", 42,
DHCP.msgType], "partition": 2});

Remote.Kafka("my-target").send({"topic": "my_topic", "messages":
 [HTTP.query,
HTTP.uri]});

send

Sends messages to a single topic.

ExtraHop 25.2 Trigger API Reference 276

Syntax:

Remote.Kafka.send("topic", message1, message2, etc...)

Remote.Kafka("my-target").send("topic", message1, message2,
 etc...)

Parameters:
If Remote.Kafka.send is called with multiple arguments, the following fields are required:
topic: String

A string corresponding to the topic associated with the Kafka send method. The topic
string has the following restrictions:

• The string length must be between 1 and 249 characters.
• The string supports only alphanumeric characters and the following symbols: "-",

"_", or ".".
• The string cannot be "." or "..".

messages: String | Number
The messages to be sent. This cannot be an array.

Return values:
None.

Examples:

Remote.Kafka.send("my_topic", HTTP.query, HTTP.uri);

Remote.Kafka("my-target").send("my_topic", HTTP.query, HTTP.uri);

Remote.MongoDB

The Remote.MongoDB class enables you to insert, remove, and update MongoDB document collections
through a MongoDB open data stream (ODS).

You must first configure a MongoDB ODS target from the Administration settings, which requires system
and access administration privileges. For configuration information, see the Open Data Streams section in
the Sensor Administration Guide .

Methods
insert

Inserts a document or array of documents into a collection, and handles both add and modify
operations.
Syntax:

Remote.MongoDB.insert("db.collection", document);

Remote.MongoDB("name").insert("db.collection", document);

Parameters:

name: String
The name of the ODS target that requests are sent to. If this field is not specified, the
name is set to default.

collection: String
The name of a group of MongoDB documents.

https://docs.extrahop.com/25.2/open-data-streams
https://docs.extrahop.com/25.2/eh-admin-ui-guide

ExtraHop 25.2 Trigger API Reference 277

document: Object
The JSON-formatted document to insert into the collection.

Return Values:
Returns true if the request is queued, otherwise returns false.

Examples:

Remote.MongoDB.insert('sessions.sess_www',
 {
 'session_id': "100",
 'path': "/index.html",
 'host': "www.extrahop.com",
 'status': "500",
 'src_ip': "10.10.1.120",
 'dst_ip': "10.10.1.100"
 }
);
var x = Remote.MongoDB.insert('test.tbc', {example: 1});
if (x) {
 Network.metricAddCount('perf_trigger_success', 1);
}
else {
 Network.metricAddCount('perf_trigger_error', 1);
}

Refer to http://docs.mongodb.org/manual/reference/method/db.collection.insert/
#db.collection.insert for more information.

remove

Removes documents from a collection.
Syntax:

Remote.MongoDB.remove("collection", document, justOnce);

Remote.MongoDB("name").remove("collection", document, justOnce]);

Parameters:

name: String
The optional name of the host specified when you configured the open data stream in
the Administration settings. If no host is specified, the value is the default host.

collection: String
The name of a group of MongoDB documents.

document: Object
The JSON-formatted document to remove from the collection.

justOnce: Boolean
An optional boolean parameter that limits the removal to just one document. Set to
true to limit the deletion. The default value is false.

Return Values:
Returns true if the request is queued, otherwise returns false.

Examples:

var x = Remote.MongoDB.remove('test.tbc', {qty: 100000}, false);
if (x) {
 Network.metricAddCount('perf_trigger_success', 1);
}
else {

http://docs.mongodb.org/manual/reference/method/db.collection.insert/#db.collection.insert
http://docs.mongodb.org/manual/reference/method/db.collection.insert/#db.collection.insert

ExtraHop 25.2 Trigger API Reference 278

 Network.metricAddCount('perf_trigger_error', 1);
}

Refer to http://docs.mongodb.org/manual/reference/method/db.collection.remove/
#db.collection.remove for more information.

update

Modifies an existing document or documents in a collection.
Syntax:

Remote.MongoDB.update("collection", document, update,
 {"upsert":true,
"multi":true});

Remote.MongoDB("name").update("collection", document, update,
{"upsert":true, "multi":true});

Parameters:

collection: String
The name of a group of MongoDB documents.

document: Object
The JSON-formatted document that specifies which documents to update or insert, if
upsert option is set to true.

update: Object
The JSON-formatted document that specifies how to update the specified documents.

name: String
The name of the host specified when you configured the open data stream in the
Administration settings. If no host was specified, the value is the default host.

options:

Optional flags that indicate the following additional update options:
upsert: Boolean

An optional boolean parameter that creates a new document when no
document matches the query data. Set to true to create a new document. The
default value is false.

multi: Boolean
An optional boolean parameter that updates all documents that match the query
data. Set to true to update multiple documents. The default value is false,
which updates only the first document returned.

Return Values:
The value is true if the request is queued, otherwise returns FALSE.

Examples:

var x = Remote.MongoDB.update('test.tbc', {_id: 1}, {$set:
 {example:2}},
{'upsert':true, 'multi':false});
if (x) {
 Network.metricAddCount('perf_trigger_success', 1);
}
else {
 Network.metricAddCount('perf_trigger_error', 1);
}

Refer to http://docs.mongodb.org/manual/reference/method/db.collection.update/
#db.collection.update for more information.

http://docs.mongodb.org/manual/reference/method/db.collection.remove/#db.collection.remove
http://docs.mongodb.org/manual/reference/method/db.collection.remove/#db.collection.remove
http://docs.mongodb.org/manual/reference/method/db.collection.update/#db.collection.update
http://docs.mongodb.org/manual/reference/method/db.collection.update/#db.collection.update

ExtraHop 25.2 Trigger API Reference 279

Trigger Examples

• Example: Parse syslog over TCP with universal payload analysis

Remote.Raw

The Remote.Raw class enables you to submit raw data to a Raw open data stream (ODS) target through a
TCP or UDP port.

You must first configure a raw ODS target from the Administration settings, which requires system and
access administration privileges. For configuration information, see the Open Data Streams section in the
Sensor Administration Guide .

Note: If the Gzip feature is enabled for the raw data stream in the Administration settings, the
Remote.Raw class will automatically compress the data with Gzip.

Methods
send

Sends raw data to a Raw open data stream (ODS) target through a TCP or UDP port.
Syntax:

Remote.Raw.send("data")

Remote.Raw("name").send("data")

Parameters:

name: String
The name of the ODS target that requests are sent to. If this field is not specified, the
name is set to default.

data: String
The JavaScript string representing the bytes to send.

Return Values:
None

Examples

Remote.Raw.send("data over the wire");

Remote.Raw("my-target").send("extra data for my-target");

Remote.Syslog

The Remote.Syslog class enables you to create remote syslog messages and send message data to a
Syslog open data stream (ODS).

You must first configure a syslog ODS target from the Administration settings, which requires system and
access administration privileges. For configuration information, see the Open Data Streams section in the
Sensor Administration Guide .

Note: If submitting an rsyslog message succeeds, the APIs will return true. In the case of either
success or failure, the trigger will continue to execute as a failure to submit an rsyslog
message is a "soft" failure. Incorrect usage of the APIs, in other words, calling them with the
wrong number or type of arguments, will still result in trigger execution stopping.

https://docs.extrahop.com/25.2/open-data-streams
https://docs.extrahop.com/25.2/eh-admin-ui-guide
https://docs.extrahop.com/25.2/open-data-streams
https://docs.extrahop.com/25.2/eh-admin-ui-guide

ExtraHop 25.2 Trigger API Reference 280

Methods
emerg(message:String):void

Sends a message to the remote syslog server with an emergency severity level.
Syntax:

Remote.Syslog.emerg("eh_event=web uri=" + HTTP.uri + " req_size="
 + HTTP.reqSize + "
rsp_size=" + HTTP.rspSize + " processingTime=" +
 HTTP.processingTime);

Remote.Syslog("name").emerg("eh_event=web uri=" + HTTP.uri + "
 req_size=" +
HTTP.reqSize + " rsp_size=" + HTTP.rspSize + " processingTime=" +
 HTTP.processingTime);

Parameters

name: String
The name of the ODS target that requests are sent to. If this field is not specified, the
name is set to default.

alert(message:String):void
Sends a message to the remote syslog server with an alert severity level.
Syntax:

Remote.Syslog.alert("eh_event=web uri=" + HTTP.uri + " req_size="
 + HTTP.reqSize + "
rsp_size=" + HTTP.rspSize + " processingTime=" +
 HTTP.processingTime);

Remote.Syslog("name").alert("eh_event=web uri=" + HTTP.uri + "
 req_size=" +
HTTP.reqSize + " rsp_size=" + HTTP.rspSize + " processingTime=" +
 HTTP.processingTime);

Parameters

name: String
The name of the ODS target that requests are sent to. If this field is not specified, the
name is set to default.

crit(message:String):void
Sends a message to the remote syslog server with a critical severity level.
Syntax:

Remote.Syslog.crit("eh_event=web uri=" + HTTP.uri + " req_size=" +
 HTTP.reqSize + "
rsp_size=" + HTTP.rspSize + " processingTime=" +
 HTTP.processingTime);

Remote.Syslog("name").crit("eh_event=web uri=" + HTTP.uri + "
 req_size=" +
HTTP.reqSize + " rsp_size=" + HTTP.rspSize + " processingTime=" +
 HTTP.processingTime);

ExtraHop 25.2 Trigger API Reference 281

Parameters

name: String
The name of the ODS target that requests are sent to. If this field is not specified, the
name is set to default.

error(message:String):void
Sends a message to the remote syslog server with an error severity level.
Syntax:

Remote.Syslog.error("eh_event=web uri=" + HTTP.uri + " req_size="
 + HTTP.reqSize + "
rsp_size=" + HTTP.rspSize + " processingTime=" +
 HTTP.processingTime);

Remote.Syslog("name").error("eh_event=web uri=" + HTTP.uri + "
 req_size=" +
HTTP.reqSize + " rsp_size=" + HTTP.rspSize + " processingTime=" +
 HTTP.processingTime);

Parameters

name: String
The name of the ODS target that requests are sent to. If this field is not specified, the
name is set to default.

warn(message:String):void
Sends a message to the remote syslog server with a warning severity level.
Syntax:

Remote.Syslog.warn("eh_event=web uri=" + HTTP.uri + " req_size=" +
 HTTP.reqSize + "
rsp_size=" + HTTP.rspSize + " processingTime=" +
 HTTP.processingTime);

Remote.Syslog("name").warn("eh_event=web uri=" + HTTP.uri + "
 req_size=" +
HTTP.reqSize + " rsp_size=" + HTTP.rspSize + " processingTime=" +
 HTTP.processingTime);

Parameters

name: String
The name of the ODS target that requests are sent to. If this field is not specified, the
name is set to default.

notice(message:String):void
Sends a message to the remote syslog server with a notice severity level.
Syntax:

Remote.Syslog.notice("eh_event=web uri=" + HTTP.uri + " req_size="
 + HTTP.reqSize + "
rsp_size=" + HTTP.rspSize + " processingTime=" +
 HTTP.processingTime);

Remote.Syslog("name").notice("eh_event=web uri=" + HTTP.uri + "
 req_size=" +
HTTP.reqSize + " rsp_size=" + HTTP.rspSize + " processingTime=" +
 HTTP.processingTime);

ExtraHop 25.2 Trigger API Reference 282

Parameters

name: String
The name of the ODS target that requests are sent to. If this field is not specified, the
name is set to default.

info(message:String):void
Sends a message to the remote syslog server with an info severity level.
Syntax:

Remote.Syslog.info("eh_event=web uri=" + HTTP.uri + " req_size=" +
 HTTP.reqSize + "
rsp_size=" + HTTP.rspSize + " processingTime=" +
 HTTP.processingTime);

Remote.Syslog("name").info("eh_event=web uri=" + HTTP.uri + "
 req_size=" +
HTTP.reqSize + " rsp_size=" + HTTP.rspSize + " processingTime=" +
 HTTP.processingTime);

Parameters

name: String
The name of the ODS target that requests are sent to. If this field is not specified, the
name is set to default.

debug(message:String):void
Sends a message to the remote syslog server with a debug severity level.
Syntax:

Remote.Syslog.debug("eh_event=web uri=" + HTTP.uri + " req_size="
 + HTTP.reqSize + "
rsp_size=" + HTTP.rspSize + " processingTime=" +
 HTTP.processingTime);

Remote.Syslog("name").debug("eh_event=web uri=" + HTTP.uri + "
 req_size=" +
HTTP.reqSize + " rsp_size=" + HTTP.rspSize + " processingTime=" +
 HTTP.processingTime);

Parameters

name: String
The name of the ODS target that requests are sent to. If this field is not specified, the
name is set to default.

Message size

By default, the message sent to the remote server is limited to 1024 bytes, including the message header
and trailer (if necessary). The message header always includes the priority and timestamp, which together
are up to 30 bytes.

If you have system and access administration privileges, you can increase the default message size
in the Administration settings. Click Running Config from the Appliance Settings section, and then
click Edit config. Go to the "remote" section, and under the ODS target name, such as "rsyslog", add
"message_length_max" as shown in the example below. The "message_length_max" setting applies only to
the message passed to the Remote.Syslog APIs; the message header does not count against the maximum.

"remote": {
 "rsyslog": {

ExtraHop 25.2 Trigger API Reference 283

 "host": "hostname",
 "port": 54322,
 "ipproto": "tcp",
 "message_length_max": 4000
 }
}

Timestamp

The default timestamp format for rsyslog messages is UTC. You can change the timestamp to local time
when you configure the open data stream in the Administration settings.

Trigger Examples

• Example: Send discovered device data to a remote syslog server
• Example: Parse syslog over TCP with universal payload analysis
• Example: Matching topnset keys

Remote

The Remote class enables you to send data to a third-party syslog, database, or server through an open
data stream (ODS) and access responses returned by HTTP ODS targets.

Events
REMOTE_RESPONSE

Runs when the ExtraHop system receives a response from an HTTP ODS target.

Note: A trigger runs on the REMOTE_RESPONSE event only if the trigger created the
ODS request that caused the response.

Properties
response: Object

An object that contains information from the HTTP response returned by the ODS target. The
response object has the following properties:
statusCode: Number

The status code returned by the ODS target.
body: Buffer

The body of the HTTP response sent by the ODS target.
headers: Object

An object that contains the headers of the HTTP response sent by the ODS target. If the
response contains multiple headers with the same name, the value for the header is an array.
For example, if Set-Cookie is specified multiple times in the response, you can access the
first cookie by specifying Remote.response.headers["Set-Cookie"][0].

context: Object | String | Number | Boolean | null
The context information specified in the Remote.HTTP context parameter when the ODS
request was sent. For more information see Remote.HTTP.

ExtraHop 25.2 Trigger API Reference 284

Datastore classes
The Trigger API classes in this section enable you to access datastore, or bridge, metrics.

Class Description

AlertRecord Enables you to access alert information on
ALERT_RECORD_COMMIT events.

Dataset Enables you to access raw dataset values and
provides an interface for computing percentiles.

MetricCycle Enables you to retrieve metrics published during
a metric cycle interval represented by the
METRIC_CYCLE_BEGIN, METRIC_CYCLE_END,
and METRIC_RECORD_COMMIT events.

MetricRecord Enables access to the current set of metrics on
METRIC_RECORD_COMMIT events.

Sampleset Enables you to retrieve summary data about
metrics.

Topnset Enables you to access data from a collection of
metrics grouped by a key such as a URI or a client IP
address.

AlertRecord

The AlertRecord class enables you to access alert information on ALERT_RECORD_COMMIT events.

Events
ALERT_RECORD_COMMIT

Runs when an alert occurs. Provides access to information about the alert.

Additional datastore options are available when you create a trigger that runs on this event. See
Advanced trigger options for more information.

Note: You cannot assign triggers that run only on this event to specific devices or device
groups. Triggers that run on this event will run whenever this event occurs.

Important: This event runs only if the NPM module is enabled on the ExtraHop system.
If your user account has not been granted NPM module access, you cannot
configure a trigger to run on this event.

Properties
description: String

The description of the alert as it appears in the ExtraHop system.
id: String

The ID of the alert record. Alert record IDs are named according to the following format:

extrahop.<object>.<alert_type>

ExtraHop 25.2 Trigger API Reference 285

<object> is the type of object that the alert applies to. For network objects, the <object> value is
capture. If the alert is for a detail topnset metric, the <alert_type> is alert_detail; otherwise,
the <alert_type> is alert. The following alert record IDs are valid:

• extrahop.capture.alert

• extrahop.capture.alert_detail

• extrahop.device.alert

• extrahop.device.alert_detail

• extrahop.application.alert

• extrahop.application.alert_detail

• extrahop.flow_network.alert

• extrahop.flow_network.alert_detail

• extrahop.flow_interface.alert

• extrahop.flow_interface.alert_detail

Note: You can restrict the trigger to only run for specified alert record types. Type a
comma-separated list of alert record IDs in the Metric types field of the Advanced
trigger options.

name: String
The name of the alert.

object: Object
The object the alert applies to. For device, application, capture, flow interface, or flow network
alerts, this property will contain a Device, Application, Network, FlowInterface, or FlowNetwork
object, respectively.

time: Number
The time that the alert record will be published with.

severityName: String
The name of the alert severity level. The following severity levels are supported:

Value Description

emerg Emergency

alert Alert

crit Critical

err Error

warn Warning

notice Notice

info Info

debug Debug

severityLevel: Number
The numeric alert severity level. The following severity levels are supported:

Value Description

0 Emergency

1 Alert

2 Critical

3 Error

ExtraHop 25.2 Trigger API Reference 286

Value Description

4 Warning

5 Notice

6 Info

7 Debug

Dataset

The dataset class enables you to access raw dataset values and provides an interface for computing
percentiles.

Instance Methods
percentile(...): Array | Number

Accepts a list of percentiles (either as an array or as multiple arguments) to compute and returns
the computed percentile values for the dataset. If passed a single numeric argument, a number
is returned. Otherwise an array is returned. The arguments must be in ascending order with no
duplicates. Floating point values, such as 99.99, are allowed.

Instance Properties
entries: Array

An array of objects with frequency and value attributes. This is analogous to a frequency table where
there is a set of values and the number of times each value was observed.

MetricCycle

The MetricCycle class represents an interval during which metrics are published. The MetricCycle class is
valid on METRIC_CYCLE_BEGIN, METRIC_CYCLE_END, and METRIC_RECORD_COMMIT events.

The METRIC_RECORD_COMMIT event is defined in the MetricRecord section.

Events
METRIC_CYCLE_BEGIN

Runs when a metric interval begins.

Note: You cannot assign triggers that run only on this event to specific devices or device
groups. Triggers that run on this event will run whenever this event occurs.

METRIC_CYCLE_END

Runs when a metric interval ends.

Note: You cannot assign triggers that run only on this event to specific devices or device
groups. Triggers that run on this event will run whenever this event occurs.

Additional datastore options are available when you create a trigger that runs on either of these events. See
Advanced trigger options for more information.

Properties
id: String

A string representing the metric cycle. The only possible value is 30sec.

ExtraHop 25.2 Trigger API Reference 287

interval: Object
An object containing from and until properties, expressed in milliseconds since the epoch.

store: Object
An object that retains information across all the METRIC_RECORD_COMMIT events that occur during
a metric cycle, that is, from the METRIC_CYCLE_BEGIN event to the METRIC_CYCLE_END event.
This object is analogous to the Flow.store object. The store object is shared among triggers for
METRIC_* events. It is cleared at the end of a metric cycle.

Trigger Examples

• Example: Add metrics to the metric cycle store

MetricRecord

The MetricRecord class enables you to access to the current set of metrics on
METRIC_RECORD_COMMIT events.

Events
METRIC_RECORD_COMMIT

Runs when a metric record is committed to the datastore and provides access to various metric
properties.

Additional datastore options are available when you create a trigger that runs on this event. See
Advanced trigger options for more information.

Note: You cannot assign triggers that run only on this event to specific devices or device
groups. Triggers that run on this event will run whenever this event occurs.

Properties
fields: Object

An object containing metric values. The properties are the field names and the values can be
numbers, Topnset, Dataset or Sampleset.

id: String
The metric type, such as extrahop.device.http_server.

object: Object
The object the metric applies to. For device, application, or VLAN alerts, this property contains a
Device object, an Application object, or a VLAN instance, respectively. For capture metrics, such as
extrahop.capture.net, the property contains a Network object. The following example code
stores the ID of an application in a variable:

var app_id = MetricRecord.object.id;

Note: The example code above always generates the following warning in the trigger
editor:

Property 'id' does not exist on type 'Device | Application
 | VLAN | Network'. ts(2339) [2, 33]
Property 'id' does not exist on type 'Network'.

The warning indicates that assigning the trigger to a network is not supported. You
can ignore this warning when the trigger is assigned to an application.

time: Number
The publish time of the metric record.

ExtraHop 25.2 Trigger API Reference 288

Trigger Examples

• Example: Matching topnset keys
• Example: Add metrics to the metric cycle store

Sampleset

The Sampleset class enables you to retrieve summary data about metrics.

Properties
count: Number

The number of samples in the sampleset.
mean: Number

The average value of the samples.
sigma: Number

The standard deviation.
sum: Number

The sum of the samples.
sum2: Number

The sum of the squares of the samples.

Topnset

The Topnset class represents a collection of metrics grouped by a key such as a URI or a client IP address.

For custom metrics, keys in the topnset corresponds to the keys passed into metricAddDetail*()
methods. Key values can be a number, string, Dataset, Sampleset, or another topnset.

Methods

findEntries(key: IPAddress | String | Object): Array
Returns all entries with matching keys.

findKeys(key: IPAddress | String | Object): Array
Returns all matching keys.

lookup(key: IPAddress | String | Object): *
Look up an item in the topnset and retrieves the first matching entry.

Properties
entries: Array

An array of the topnset entries. The array contains at most N objects with key and value properties
where N is currently set to 1000.

Keys in the entries array adhere to the following structure, or key pattern:

type: String
The type of the topnset key. The following key types are supported:

• int

• string

• device_id

• ipaddr

• addr_pair

ExtraHop 25.2 Trigger API Reference 289

• ether

value: *
The key value, which varies depending on the key type.

• For int, string, and device_id keys, the value is a number, string, and device ID,
respectively.

• For ipaddr keys, the value is an object containing the following properties:

• addr

• proto

• port

• device_id

• origin

• For addr_pair keys, the value is an object containing the following properties:

• addr1

• addr2

• port1

• port2

• proto

• For ether keys, the value is an object containing the following properties:

• ethertype

• hwaddr

ExtraHop 25.2 Trigger API Reference 290

Deprecated API elements
The API elements listed in this section have been deprecated. Each element includes an alternative and the
version in which the element was deprecated.

If your trigger script contains a deprecated element, the syntax validator in the trigger editor lets you know
which element is deprecated and suggests a replacement element, if available. You cannot save the trigger
until you fix your code or you disable syntax validation. For better trigger performance, replace deprecated
elements.

Deprecated advanced trigger options

Option Replacement Version

5min, 1hr, and 24hr metric cycles There is no replacement for 5 minute, 1 hour,
and 24 hour metric cycles. However, 30
second metric cycles are still supported.

9.6

Deprecated global functions

Function Replacement Version

exit(): Void The return statement 4.0

getTimestampMSec(): Number getTimestamp(): Number 4.0

Deprecated global function parameters

Function Property Replacement Version

commitDetection() categories You can specify detection categories in
the Detection Catalog .

9.3

Deprecated events

Event Replacement Version

NEW_VLAN No replacement 6.1

Deprecated classes

Class Replacement Version

RemoteSyslog Remote.Syslog 4.0

XML Regular expressions 6.0

TroubleGroup No replacement 6.0

Deprecated methods by class

Class Method Replacement Version

getApplication(): String getApplications(): String 5.3Flow

setApplication(name: String,
turnTiming: Boolean): void

addApplication(name: String,
turnTiming: Boolean): void

5.3

https://docs.extrahop.com/25.2/create-custom-detection/#create-a-custom-detection-type
https://docs.extrahop.com/25.2/create-custom-detection/#create-a-custom-detection-type

ExtraHop 25.2 Trigger API Reference 291

Class Method Replacement Version

Session update(key: String, value:
, options: Object)

replace(key: String, value:
*, options: Object): *

3.9

SSL setApplication(name:
String): void

addApplication(name:
String): void

5.3

Deprecated properties by class

Class Property Replacement Version

error: String isError: Boolean 5.0AAA

tprocess: Number processingTime: Number 5.2

DB tprocess: Number processingTime: Number 5.2

Detection participants.object_type:
String

instanceof operator 7.8

Discover vlan: VLAN No replacement 6.1

DNS tprocess: Number processingTime: Number 5.2

isClientAborted: Boolean isAborted: Boolean 3.10

isServerAborted: Boolean isAborted: Boolean 3.10

Flow

turnInfo: String Top-level Turn object with
attributes for the turn

3.9

FTP tprocess: Number processingTime: Number 5.2

HL7 tprocess: Number processingTime: Number 5.2

payloadText: String payload: Buffer 4.0HTTP

tprocess: Number processingTime: Number 5.2

messageID: String msgID: Buffer 5.2

msgSize: Number totalMsgLength: Number 5.2

objectHandle: String No replacement 5.0

IBMMQ

payload: Buffer msg: Buffer 5.2

authTicket: String user: String 3.7

application: String program: String 5.2

ICA

client: String clientMachine: String 6.0

LDAP tprocess: Number processingTime: Number 5.2

roundTripTime: Number on the
MONGODB_REQUEST event.

No replacement 25.2MongoDB

tprocess: Number processingTime: Number 5.2

Netflow tos: Number dscp: Number

dscp: String

6.1

NTLM ntlmRspVersion: String rspVersion: String 8.2

ExtraHop 25.2 Trigger API Reference 292

Class Property Replacement Version

cyuFingerprint: String No replacement 9.6

tags: Array of Objects No replacement 9.6

QUIC

record.cyuFingerprint:
String

No replacement 9.6

SMPP tprocess: Number processingTime: Number 5.2

recipient: String recipientList: Array of Strings 7.5

roundTripTime: Number on the
SMTP_REQUEST event.

No replacement 25.2

SMTP

tprocess: Number processingTime: Number 5.2

SSL.record.ja3Hash: String SSL.ja3Hash: String 9.7

SSL.record.ja3sHash: String SSL.ja3sHash String 9.7

reqBytes: Number clientBytes: Number 6.1

reqL2Bytes: Number clientL2Bytes: Number 6.1

reqPkts: Number clientPkts: Number 6.1

rspBytes: Number serverBytes: Number 6.1

rspL2Bytes: Number serverL2Bytes: Number 6.1

SSL

rspPkts: Number serverPkts: Number 6.1

wndSize: Number initRcvWndSize: Number 6.2

wndSize1: Number initRcvWndSize1: Number 6.2

TCP

wndSize2: Number initRcvWndSize2: Number 6.2

reqSize: Number clientBytes: Number 4.0

reqXfer: Number clientTransferTime: Number 4.0

respSize: Number serverBytes: Number 4.0

rspXfer: Number serverTransferTime: Number 4.0

Turn

tprocess: Number processingTime: Number 4.0

ExtraHop 25.2 Trigger API Reference 293

Advanced trigger options
You can configure advanced options for some events when you create a trigger.

The following table describes available advanced options and applicable events.

Option Description Supported events

Bytes Per Packet to Capture Specifies the number of bytes to
capture per packet. The capture
starts with the first byte in the
packet. Specify this option only if
the trigger script performs packet
capture.

A value of 0 specifies that the
capture should collect all bytes in
each packet.

All events are supported except
the following list:

• ALERT_RECORD_COMMIT

• METRIC_CYCLE_BEGIN

• METRIC_CYCLE_END

• FLOW_REPORT

• NEW_APPLICATION

• NEW_DEVICE

• SESSION_EXPIRE

L7 Payload Bytes to Buffer Specifies the maximum number of
payload bytes to buffer.

Note: If multiple triggers run on
the same event, the trigger
with the highest L7 Payload
Bytes to Buffer value
determines the maximum
payload for that event for
each trigger.

• CIFS_REQUEST

• CIFS_RESPONSE

• HTTP_REQUEST

• HTTP_RESPONSE

• ICA_TICK

• LDAP_RESPONSE

Clipboard Bytes Specifies the number of bytes
to buffer on a Citrix clipboard
transfer.

• ICA_TICK

Metric cycle Specifies the length of the metric
cycle, expressed in seconds. The
only valid value is 30sec.

• METRIC_CYCLE_BEGIN

• METRIC_CYCLE_END

• METRIC_RECORD_COMMIT

Metric types Specifies the metric type by
the raw metric name, such as
extrahop.device.http_server.

• ALERT_RECORD_COMMIT

• METRIC_RECORD_COMMIT

ExtraHop 25.2 Trigger API Reference 294

Option Description Supported events
Specify multiple metric types in a
comma-delimited list.

Run trigger on each flow turn Enables packet capture on each
flow turn.

Per-turn analysis continuously
analyzes communication between
two endpoints to extract a single
payload data point from the flow.

If this option is enabled, any
values specified for the Client
matching string and Server
matching string options are
ignored.

• SSL_PAYLOAD

• TCP_PAYLOAD

Client Port Range Specifies the client port range.

Valid values are 0 to 65535.
• SSL_PAYLOAD

• TCP_PAYLOAD

• UDP_PAYLOAD

Client Bytes to Buffer Specifies the number of client
bytes to buffer.

The value of this option cannot be
set to 0 if the value of the Server
bytes to buffer option is also set
to 0.

• SSL_PAYLOAD

• TCP_PAYLOAD

Client Buffer Search String Specifies the format string that
indicates when to begin buffering
client data. Returns the entire
packet upon a string match.

You can specify the string as
text or hexidecimal numbers. For
example, both ExtraHop and
\x45\x78\x74\x72\x61\x48\x6F
\x70 are equivalent. Hexidecimal
numbers are not case sensitive.

Any value specified for this option
is ignored if the Per Turn or Run

• SSL_PAYLOAD

• TCP_PAYLOAD

• UDP_PAYLOAD

ExtraHop 25.2 Trigger API Reference 295

Option Description Supported events
trigger on all UDP packets option
is enabled.

Server Port Range Specifies the server port range.

Valid values are 0 to 65535.
• SSL_PAYLOAD

• TCP_PAYLOAD

• UDP_PAYLOAD

Server Bytes to Buffer Specifies the number of server
bytes to buffer.

The value of this option cannot be
set to 0 if the value of the Client
bytes to buffer option is also set
to 0.

• SSL_PAYLOAD

• TCP_PAYLOAD

Server Buffer Search String Specifies the format string that
indicates when to begin buffering
server data.

You can specify the string as
text or hexidecimal numbers. For
example, both ExtraHop and
\x45\x78\x74\x72\x61\x48\x6F
\x70 are equivalent. Hexidecimal
numbers are not case sensitive.

Any value specified for this option
is ignored if the Per Turn or
Run trigger on all UDP option is
enabled.

• SSL_PAYLOAD

• TCP_PAYLOAD

• UDP_PAYLOAD

Run trigger on all UDP packets Enables capture of all UDP
datagrams.

• UDP_PAYLOAD

Run FLOW_CLASSIFY on
expiring, unclassified flows

Enables running the event upon
expiration to accumulate metrics
for flows that were not classified
before expiring.

• FLOW_CLASSIFY

External types Specifies the types of external
data the trigger processes. The
trigger only runs if the payload
contains a type field with one
of the specified values. Specify
multiple types in a comma-
separated list.

1. EXTERNAL_DATA

ExtraHop 25.2 Trigger API Reference 296

Examples
The following examples are available:

• Example: Collect ActiveMQ metrics
• Example: Send data to Azure with Remote.HTTP
• Example: Monitor SMB actions on devices
• Example: Track 500-level HTTP responses by customer ID and URI
• Example: Collect response metrics on database queries
• Example: Send discovered device data to a remote syslog server
• Example: Send data to Elasticsearch with Remote.HTTP
• Example: Access HTTP header attributes
• Example: Collect IBMMQ metrics
• Example: Record Memcache hits and misses
• Example: Parse memcache keys
• Example: Add metrics to the metric cycle store
• Example: Parse NTP with universal payload analysis
• Example: Parse custom PoS messages with universal payload analysis
• Example: Parse syslog over TCP with universal payload analysis
• Example: Record data to a session table
• Example: Track SOAP requests
• Example: Matching topnset keys
• Example: Create an application container

Example: Collect ActiveMQ metrics
The trigger in this example records destination information from the Java Messaging Service (JMS). The
trigger creates an application and collects custom metrics that include the whether the broker of an event is
the sender or receiver and the JMS destination field specified on that event.

Run the trigger on the following events: ACTIVEMQ_MESSAGE

var app = Application("ActiveMQ Sample");
 if (ActiveMQ.senderIsBroker) {
 if (ActiveMQ.receiverIsBroker) {
 app.metricAddCount("amq_broker", 1);
 app.metricAddDetailCount("amq_broker", ActiveMQ.queue, 1);
 }
 else {
 app.metricAddCount("amq_msg_out", 1);
 app.metricAddDetailCount("amq_msg_out", ActiveMQ.queue, 1);
 }
}
else {
 app.metricAddCount("amq_msg_in", 1);
 app.metricAddDetailCount("amq_msg_in", ActiveMQ.queue, 1);
}

Related classes

• ActiveMQ
• Application

ExtraHop 25.2 Trigger API Reference 297

Example: Send data to Azure with Remote.HTTP
The trigger in this example sends data to the Microsoft Azure Table storage service through an HTTP open
data stream (ODS).

You must first configure an HTTP open data stream from the Administration settings before you create
the trigger. The ODS configuration contains the authentication information required to sign in to your
Microsoft Azure service. For configuration information, see Configure an HTTP target for an open data
stream in the ExtraHop Admin UI Guide .

Run the trigger on the following events: HTTP_RESPONSE

// The name of the HTTP destination defined in the ODS config
var REST_DEST = "my_table_storage";

// The name of the table within Azure Table storage
var TABLE_NAME = "TestTable";

/* If the header is not set to this value, Azure expects to receive XML;
 * however, it is easier for a trigger to send JSON.
 * The ODS config enables you to specify the datatype of fields; in this
 case
 * the timestamp (TS) field is a datetime even though it is serialized from
 a
 * Date to a String.
 */

var headers = { "Content-Type": "application/json;odata=minimalmetadata" };

var now = new Date(getTimestamp());
var msg = {
 "RowKey": now.getTime().toString(), // must be a string
 "PartitionKey": "my_key", // must be a string
 "HTTPMethod": HTTP.method,
 "DestAddr": Flow.server.ipaddr,
 "SrcAddr": Flow.client.ipaddr,
 "SrcPort": Flow.client.port,
 "DestPort": Flow.server.port,
 "TS@odata.type": "Edm.DateTime", // metadata to describe format of TS
 field
 "TS": now.toISOString(),
 "ServerTime": HTTP.processingTime,
 "RspTTLB": HTTP.rspTimeToLastByte,
 "RspCode": HTTP.statusCode.toString(),
 "URI": "http://" + HTTP.host + HTTP.path,
};

// debug(JSON.stringify(msg));
Remote.HTTP(REST_DEST).post({ path: "/" + TABLE_NAME, headers: headers,
 payload:
JSON.stringify(msg) });

Related classes

• Remote.HTTP
• Flow
• HTTP

https://docs.extrahop.com/25.2/eh-admin-ui-guide/#configure-an-http-target-for-an-open-data-stream
https://docs.extrahop.com/25.2/eh-admin-ui-guide/#configure-an-http-target-for-an-open-data-stream
https://docs.extrahop.com/25.2/eh-admin-ui-guide/

ExtraHop 25.2 Trigger API Reference 298

Example: Monitor SMB actions on devices
The trigger in this example monitors the SMB actions performed on devices, and then creates custom
device metrics that collect the total number of bytes read and written, and the number of bytes written by
SMB users that are not authorized to access a sensitive resource.

Run the trigger on the following events: CIFS_RESPONSE

var client = Flow.client.device,
 server = Flow.server.device,
 clientAddress = Flow.client.ipaddr,
 serverAddress = Flow.server.ipaddr,
 file = CIFS.resource,
 user = CIFS.user,
 resource,
 permissions,
 writeBytes,
 readBytes;

// Resource to monitor
resource = "\\Clients\\Confidential\\";
// Users of interest and their permissions
permissions = {
 "\\\\EXTRAHOP\\tom" : {read: false, write: false},
 "\\\\Anonymous" : {read: true, write: false},
 "\\\\WORKGROUP\\maria" : {read: true, write: true}
};

// Check if this is an action on your monitored resource
if ((file !== null) && (file.indexOf(resource) !== -1)) {
 if (CIFS.isCommandWrite) {
 writeBytes = CIFS.reqSize;
 // Record bytes written
 Device.metricAddCount("cifs_write_bytes", writeBytes);
 Device.metricAddDetailCount("cifs_write_bytes", user, writeBytes);
 // Record number of writes
 Device.metricAddCount("cifs_writes", 1);
 Device.metricAddDetailCount("cifs_writes", user, 1);
 // Record number of unauthorized writes
 if (!permissions[user] || !permissions[user].write) {
 Device.metricAddCount("cifs_unauth_writes", 1);
 Device.metricAddDetailCount("cifs_unauth_writes", user, 1);
 }
 }

 if (CIFS.isCommandRead) {
 readBytes = CIFS.reqSize;
 // Record bytes read
 Device.metricAddCount("cifs_read_bytes", readBytes);
 Device.metricAddDetailCount("cifs_read_bytes", user, readBytes);
 // Record number of reads
 Device.metricAddCount("cifs_reads", 1);
 Device.metricAddDetailCount("cifs_reads", user, 1);
 // Record number of unauthorized reads
 if (!permissions[user] || !permissions[user].read) {
 Device.metricAddCount("cifs_unauth_reads", 1);
 Device.metricAddDetailCount("cifs_unauth_reads", user, 1);
 }
 }
}

ExtraHop 25.2 Trigger API Reference 299

Related classes

• CIFS
• Device
• Flow

Example: Track 500-level HTTP responses by customer ID and URI
The trigger in this example tracks HTTP server responses that result in an error code of 500. The trigger
also creates custom device metrics that collect the customer ID and URI in the header of each 500
response.

Run the trigger on the following events: HTTP_REQUEST and HTTP_RESPONSE

var custId,
 query,
 uri,
 key;

if (event === "HTTP_REQUEST") {
 custId = HTTP.headers["Cust-ID"];
 // Only keep the URI if there is a customer id
 if (custId !== null) {
 Flow.store.custId = custId;

 query = HTTP.query;

 /* Pull the complete URI (URI plus query string) and save it to
 * the Flow store for a subsequent response event.
 *
 * The query string data is only available on the request.
 */
 uri = HTTP.uri;
 if ((uri !== null) && (query !== null)) {
 uri = uri + "?" + query;
 }

 // Keep URIs for handling by HTTP_RESPONSE triggers
 Flow.store.uri = uri;
 }
}
else if (event === "HTTP_RESPONSE") {
 custId = Flow.store.custId;

 // Count total requests by customer ID
 Device.metricAddCount("custid_rsp_count", 1);
 Device.metricAddDetailCount("custid_rsp_count_detail", custId, 1);

 // If the status code is 500 or 503, record the URI and customer ID
 if ((HTTP.statusCode === 500) || (HTTP.statusCode === 503)){
 // Combine URI and customer ID to create the detail key
 key = custId;
 if (Flow.store.uri != null) {
 key += ", " + Flow.store.uri;
 }
 Device.metricAddCount("custid_error_count", 1);
 Device.metricAddDetailCount("custid_error_count_detail", key, 1);
 }
}

ExtraHop 25.2 Trigger API Reference 300

Related classes

• HTTP
• Flow
• Device

Example: Collect response metrics on database queries
The trigger in this example creates custom device metrics that collect the number of responses and the
processing times on database queries.

Run the trigger on the following events: DB_RESPONSE

let stmt = DB.statement;
if (stmt === null) {
 return;
}

// Remove leading whitespace and truncate
stmt = stmt.trimLeft().substr(0, 1023);

// Record counts by statement
Device.metricAddCount("db_rsp_count", 1);
Device.metricAddDetailCount("db_rsp_count_detail", stmt, 1);

// Record processing times by statement
Device.metricAddSampleset("db_proc_time", DB.processingTime);
Device.metricAddDetailSampleset("db_proc_time_detail",
 stmt, DB.processingTime);

Related classes

• DB
• Device

Example: Send discovered device data to a remote syslog server
The trigger in this example discovers when a new device is detected on the ExtraHop system and creates
remote syslog messages that contain device attributes.

You must first configure a remote open data stream from the Administration settings before you create
the trigger. The ODS configuration specifies the location of the remote syslog server. For configuration
information, see Configure a syslog target for an open data stream in the ExtraHop Admin UI Guide .

Run the trigger on the following events: NEW_DEVICE

var dev = Discover.device;
Remote.Syslog.info('Discovered device ' + dev.id + ' (hwaddr: ' + dev.hwaddr
 + ')
');

Related classes

• Remote.Syslog
• Discover
• Device

https://docs.extrahop.com/25.2/eh-admin-ui-guide/#configure-a-syslog-target-for-an-open-data-stream
https://docs.extrahop.com/25.2/eh-admin-ui-guide/

ExtraHop 25.2 Trigger API Reference 301

Example: Send data to Elasticsearch with Remote.HTTP
The trigger in this example sends data to an Elasticsearch server through an HTTP open data stream (ODS).

You must first configure an HTTP open data stream from the Administration settings before you create
the trigger. The ODS configuration specifies the Elasticsearch target and any required authentication
credentials. For configuration information, see Configure an HTTP target for an open data stream in the
ExtraHop Admin UI Guide .

Run the trigger on the following events: HTTP_REQUEST and HTTP_RESPONSE

var date = new Date();
var payload = {
 'ts' : date.toISOString(), // Timestamp recognized by Elasticsearch
 'eh_event' : 'http',
 'my_path' : HTTP.path};
var obj = {
 'path' : '/extrahop/http', // Add to ExtraHop index
 'headers' : {},
 'payload' : JSON.stringify(payload)} ;
Remote.HTTP('elasticsearch').request('POST', obj);

Related classes

• Remote.HTTP

Example: Access HTTP header attributes
The trigger in this example accesses HTTP event attributes from the header object, and creates custom
device metrics that count header requests and attributes.

Run the trigger on the following events: HTTP_RESPONSE

var hdr,
 session,
 accept,
 results,
 headers = HTTP.headers,
 i;

// Header lookups are case-insensitive properties
session = headers["X-Session-Id"];

/* Session is a string representing the value of the header (or null
 * if the header is not present). Header values are always strings.
 */

// This syntax also works if the header is a legal property name
accept = headers.accept;

/*
 * In the event that there are multiple instances of a header,
 * accessing the header in the above manner (as a property)
 * will always return the value for the first appearance of the
 * header.
 */

if (session !== null)
{
 // Count requests per session ID

https://docs.extrahop.com/25.2/eh-admin-ui-guide/#configure-an-http-target-for-an-open-data-stream
https://docs.extrahop.com/25.2/eh-admin-ui-guide/

ExtraHop 25.2 Trigger API Reference 302

 Device.metricAddCount("req_count", 1);
 Device.metricAddDetailCount("req_count", session, 1);
}

/* Looping over all headers
 *
 * The "length" property is case-sensitive and is not
 * treated as a header lookup. Instead, it returns the number of
 * headers (as if HTTP.headers were an array). In the unlikely
 * event that there is a header called "Length," it would still be
 * accessible with HTTP.headers["Length"] (or HTTP.headers.Length).
 */

for (i = 0; i < headers.length; i++) {
 hdr = headers[i];
 debug("headers[" + i + "].name: " + hdr.name);
 debug("headers[" + i + "].value: " + hdr.value);
 Device.metricAddCount("hdr_count", 1);
 /* Count instances of each header */
 Device.metricAddDetailCount("hdr_count", hdr.name, 1);
}

// Searching for headers by prefix
results = HTTP.findHeaders("Content-");

/* The "results" property is an array (a real javascript array, as opposed
 * to an array-like object) of header objects (with name and value
 * properties) where the names match the prefix of the string passed
 * to findHeaders.
 */
for (i = 0; i < results.length; i++) {
 hdr = results[i];
 debug("results[" + i + "].name: " + hdr.name);
 debug("results[" + i + "].value: " + hdr.value);
}

Related classes

• HTTP
• Device

Example: Collect IBMMQ metrics
The triggers in this example work together to give a view of the flow of queue level messages through the
IBMMQ protocol. The triggers create custom application metrics that count the number of messages in,
out, and exchanged between brokers by different message queues.

Run the following trigger on the IBMMQ_REQUEST event.

if (IBMMQ.method == "MESSAGE_DATA") {
 var app = Application("IBMMQ Sample");
 app.metricAddCount("broker", 1);
 if (IBMMQ.queue !== null) {
 var ret = IBMMQ.queue.split(":");
 var queue = ret.length > 1 ? ret[1] : ret[0];
 app.metricAddDetailCount("broker", queue, 1);
 }
 else {
 app.metricAddCount("queueless_broker", 1);
 }
 if (IBMMQ.queue !== null && IBMMQ.queue.indexOf("QUEUE2") > -1) {

ExtraHop 25.2 Trigger API Reference 303

 app.metricAddCount("queue2_broker", 1);
 }
 app.commit();
}
elseif (IBMMQ.method == "MQPUT" || IBMMQ.method == "MQPUT1") {
 var app = Application("IBMMQ Sample");
 app.metricAddCount("msg_in", 1);
 if (IBMMQ.queue !== null) {
 var ret = IBMMQ.queue.split(":");
 var queue = ret.length > 1 ? ret[1] : ret[0];
 app.metricAddDetailCount("msg_in", queue, 1);
 }
 else {
 app.metricAddCount("queueless_msg_in", 1);
 }
 if (IBMMQ.queue !== null && IBMMQ.queue.indexOf("QUEUE2") > -1) {
 app.metricAddCount("queue2_msg_in", 1);
 }
 app.commit();
}

Run the following trigger on the IBMMQ_RESPONSE event.

if (IBMMQ.method == "ASYNC_MSG_V7" || IBMMQ.method == "MQGET_REPLY") {
 var app = Application("IBMMQ Sample");
 if (IBMMQ.payload === null) {
 app.metricAddCount("payloadless_msg_out", 1);
 }
 else {
 app.metricAddCount("msg_out", 1);
 if (IBMMQ.queue !== null) {
 var ret = IBMMQ.queue.split(":");
 var queue = ret.length > 1 ? ret[1] : ret[0];
 app.metricAddDetailCount("msg_out", queue, 1);
 }
 else {
 app.metricAddCount("queueless_msg_out", 1);
 }
 if (IBMMQ.queue !== null && IBMMQ.queue.indexOf("QUEUE2") > -1) {
 app.metricAddCount("queue2_msg_out", 1);
 }
 }
 app.commit();
}

Related classes

• IBMMQ
• Application

Example: Record Memcache hits and misses
The trigger in this example creates custom device metrics that record each memcache hit or miss and the
access time of each hit.

Run the trigger on the following events: MEMCACHE_RESPONSE

var hits = Memcache.hits;
var misses = Memcache.misses;
var accessTime = Memcache.accessTime;
var i;

ExtraHop 25.2 Trigger API Reference 304

Device.metricAddCount('memcache_key_hit', hits.length);

for (i = 0; i < hits.length; i++) {
 var hit = hits[i];
 if (hit.key != null) {
 Device.metricAddDetailCount('memcache_key_hit_detail', hit.key, 1);
 }
}

if (!isNaN(accessTime)) {
 Device.metricAddSampleset('memcache_key_hit', accessTime);
 if ((hits.length > 0) && (hits[0].key != null)) {
 Device.metricAddDetailSampleset('memcache_key_hit_detail',
 hits[0].key,
 accessTime);
 }
}

Device.metricAddCount('memcache_key_miss', misses.length);

for (i = 0; i < misses.length; i++) {
 var miss = misses[i];
 if (miss.key != null) {
 Device.metricAddDetailCount('memcache_key_miss_detail', miss.key, 1);
 }
}

Related classes

• Memcache
• Device

Example: Parse memcache keys
Parses the memcache keys to extract detailed breakdowns, such as by ID module and class name, and
creates custom device metrics to collect key details.

Keys are formatted as "com.extrahop.<module>.<class>_<id>"—for example:
"com.extrahop.widgets.sprocket_12345".

Run the trigger on the following events: MEMCACHE_RESPONSE

var method = Memcache.method;
var statusCode = Memcache.statusCode;
var reqKeys = Memcache.reqKeys;
var hits = Memcache.hits;
var misses = Memcache.misses;
var error = Memcache.error;
var hit;
var miss;
var key;
var size;
var reqKey;
var i;

// Record breakdown of hit count and value size by module and class
for (i = 0; i < hits.length; i++) {
 hit = hits[i];
 key = hit.key;
 size = hit.size;

ExtraHop 25.2 Trigger API Reference 305

 Device.metricAddCount("hit", 1);
 if (key != null) {
 var parts = key.split(".");

 if ((parts.length == 4) && (parts[0] == "com") &&
 (parts[1] == "extrahop")) {
 var module = parts[2];
 var subparts = parts[3].split("_");

 Device.metricAddDetailCount("hit_module", module, 1);
 Device.metricAddDetailSampleset("hit_module_size", module, size);

 if (subparts.length == 2) {
 var hitClass = module + "." + subparts[0];

 Device.metricAddDetailCount("hit_class", hitClass, 1);
 Device.metricAddDetailSampleset("hit_class_size", hitClass,
 size);
 }
 }
 }
}

// Record misses by ID to help identify caching issues
for (i = 0; i < misses.length; i++) {
 miss = misses[i];
 key = miss.key;
 if (key != null) {
 var parts = key.split(".");

 if ((parts.length == 4) && (parts[0] == "com") &&
 (parts[1] == "extrahop") && (parts[2] == "widgets")) {
 var subparts = parts[3].split("_");

 if ((subparts.length == 2) && (subparts[0] == "sprocket")) {
 Device.metricAddDetailCount("sprocket_miss_id", subparts[1], 1);
 }
 }
 }
}

// Record the keys that produced any errors
if (error != null && method != null) {
 for (i = 0; i < reqKeys.length; i++) {
 reqKey = reqKeys[i];
 if (reqKey != null) {
 var errDetail = method + " " + reqKey + " / " + statusCode + ": " +
 error;
 Device.metricAddDetailCount("error_key", errDetail, 1);
 }
 }
}

// Record the status code, matching built-in metrics
if (Memcache.isBinaryProtocol && statusCode != "NO_ERROR") {
 Device.metricAddDetailCount("status_code",
 method + "/" + statusCode, 1);
}
else {
 Device.metricAddDetailCount("status_code", statusCode, 1);
}

ExtraHop 25.2 Trigger API Reference 306

Related classes

• Memcache
• Device

Example: Add metrics to the metric cycle store
The trigger in this example illustrates how to temporarily store data from all metric record commits that
occur during a metric cycle.

Run the trigger on the following events: METRIC_CYCLE_BEGIN, METRIC_CYCLE_END,
METRIC_RECORD_COMMIT

Configure advanced trigger options as shown in the following table:

Option Value

Metric Cycle 30sec

Metric Type extrahop.device.http_server,

extrahop.device.tcp

var store = MetricCycle.store;

function processMetric() {
 var id = MetricRecord.id,
 deviceId = MetricRecord.object.id,
 fields = MetricRecord.fields;

 if (!store.metrics[deviceId]) {
 store.metrics[deviceId] = {};
 }
 if (id === 'extrahop.device.http_server') {
 store.metrics[deviceId].httpRspAborted= fields['rsp_abort'];
 }
 else if (id === 'extrahop.device.tcp') {
 store.metrics[deviceId].tcpAborted = fields['aborted_out'];
 }
}

function commitSyntheticMetrics() {
 var dev,
 metrics,
 abortPct,
 deviceId;
 for (deviceId in store.metrics) {
 metrics = store.metrics[deviceId];
 abortPct = (metrics.httpRspAborted / metrics.tcpAborted) * 100;
 dev = new Device(deviceId);
 dev.metricAddSnap('http-tcp-abort-pct', abortPct);
 }
}

switch (event) {
case 'METRIC_CYCLE_BEGIN':
 store.metrics = {};
 break;

case 'METRIC_RECORD_COMMIT':
 processMetric();
 break;

ExtraHop 25.2 Trigger API Reference 307

case 'METRIC_CYCLE_END':
 commitSyntheticMetrics();
 break;
}

Related classes

• MetricCycle
• MetricRecord
• Device

Example: Parse custom PoS messages with universal payload analysis
The trigger in this example parses TCP messages from a point-of-sale (PoS) system and creates custom
device metrics that collect specific values in the 4th to 7th bytes of both response and request messages.

Run the trigger on the following events: TCP_PAYLOAD

// Define variables; store client or server payload into a Buffer object

var buf_client = Flow.client.payload,
 buf_server = Flow.server.payload,
 protocol = Flow.l7proto,

// PoS Message Type Structure Definition
 pos_message_type = {
 "0100" : "0100_Authorization_Request",
 "0101" : "0101_Authorization_Request_Repeat",
 "0110" : "0110_Authorization_Response",
 "0200" : "0200_Financial_Request",
 "0201" : "0201_Financial_Request_Repeat",
 "0210" : "0210_Financial_Response",
 "0220" : "0220_Financial_Transaction_Advice_Request",
 "0221" : "0221_Financial_Transaction_Advice_Request_Repeat",
 "0230" : "0230_Financial_Transaction_Advice_Response",
 "0420" : "0420_Reversal_Advice_Request",
 "0421" : "0421_Reversal_Advice_Request_Repeat",
 "0430" : "0430_Reversal_Advice_Response",
 "0600" : "0600_Administration_Request",
 "0601" : "0601_Administration_Request_Repeat",
 "0610" : "0610_Administration_Response",
 "0620" : "0620_Administration_Advice_Request",
 "0621" : "0621_Administration_Advice_Request_Repeat",
 "0630" : "0630_Administration_Advice_Response",
 "0800" : "0800_Administration_Request",
 "0801" : "0801_Administration_Request_Repeat",
 "0810" : "0810_Administration_Response"
 };

// Skip parsing if it is a protocol of no interest or there is no payload
if (protocol !== 'tcp:4015' || (buf_client === null && buf_server === null))
 {
 // debug('Protocol of no interest: ' + protocol);
 return;
} else {
 /* Store the data into variables for future access since there is some
 payload
 * to parse
 */
 var client_ip = Flow.client.ipaddr,

ExtraHop 25.2 Trigger API Reference 308

 server_ip = Flow.server.ipaddr,
 client_port = Flow.client.port,
 server_port = Flow.server.port;
 // client = new Device(Flow.client.device.id),
 // server = new Device(Flow.server.device.id);
}

if (buf_client !== null && buf_client.length >= 7) {

 // This is a client payload
 var cli_msg_type = buf_client.slice(3,7).decode('utf-8');
 debug('Client: ' + client_ip + ":" + client_port + " Type: " +
 pos_message_type[cli_msg_type]);
 Device.metricAddCount('UPA_Request', 1);
 Device.metricAddDetailCount('UPA_Request_by_Message',
 pos_message_type[cli_msg_type], 1);
 Device.metricAddDetailCount('UPA_Request_by_Client',
 client_ip.toString(), 1);

} else if (buf_server !== null && buf_server.length >= 7) {

 // This is a server payload
 var srv_msg_type = buf_server.slice(3,7).decode('utf-8');
 debug('Server: ' + server_ip + " Client: " + client_ip + ":" +
 client_port +"
Type: " + pos_message_type[srv_msg_type]);
 Device.metricAddCount('UPA_Response', 1);
 Device.metricAddDetailCount('UPA_Response_by_Message',
 pos_message_type[srv_msg_type], 1);
 Device.metricAddDetailCount('UPA_Response_by_Client',
 client_ip.toString(), 1);

} else {

 // No buffer captured situation
 //debug('Null or not enough buffer data');
 return;
}

Related classes

• Buffer
• Device
• Flow

Example: Parse syslog over TCP with universal payload analysis
The trigger in this example parses the syslog over TCP and counts the syslog activity over time, both
network-wide and per device.

Note: You might need to edit the trigger example to make sure the network ports for your syslog
server match the ports in your environment.

Run the trigger on the following events: TCP_PAYLOAD, UDP_PAYLOAD

// Global variables
var buffer = Flow.client.payload,
 buffer_size = Flow.client.payload.length + 1,
 client = new Device(Flow.client.device.id),
 data_as_json = { client_ip : Flow.client.ipaddr.toString(),
 client_port : Flow.client.port.toString(),

ExtraHop 25.2 Trigger API Reference 309

 server_ip : Flow.server.ipaddr.toString(),
 server_port : Flow.server.port.toString(),
 protocol : 'syslog',
 protocol_fields : {} },
 protocol = Flow.l7proto,
 server = new Device(Flow.server.device.id),
 syslog = {},
 syslog_facility = {
 "0": "kern",
 "1": "user",
 "2": "mail",
 "3": "daemon",
 "4": "auth",
 "5": "syslog",
 "6": "lpr",
 "7": "news",
 "8": "uucp",
 "9": "clock_daemon",
 "10": "authpriv",
 "11": "ftp",
 "12": "ntp",
 "13": "log_audit",
 "14": "log_alert",
 "15": "cron",
 "16": "local0",
 "17": "local1",
 "18": "local2",
 "19": "local3",
 "20": "local4",
 "21": "local5",
 "22": "local6",
 "23": "local7",
 },
 syslog_priority = {
 "0": "emerg",
 "1": "alert",
 "2": "crit",
 "3": "err",
 "4": "warn",
 "5": "notice",
 "6": "info",
 "7": "debug",
 };

// Exit out early if not classified properly or no payload

if ((protocol != 'tcp:5141') || (buffer === null)) {
 debug('Invalid protocol ' + protocol +
 ' or null buffer (' + buffer.unpack('z').join(' ') + ')');
 return;
}

// Get started parsing Syslog

var data = buffer.unpack('z');

// Separate the PRIO field from the rest of the message
var msg_part = data[0].split('>')[1].split(' ');
var prio_part = data[0].split('>')[0].split('<')[1];

// Decode the PRIO field into Syslog facility and priority
var raw_facility = parseInt(prio_part) >> 3;
var raw_priority = parseInt(prio_part) & 7;

ExtraHop 25.2 Trigger API Reference 310

syslog.facility = syslog_facility[raw_facility];
syslog.priority = syslog_priority[raw_priority];

/* Timestamp and hostname are technically part of the HEADER field, but
 * treat the rest of the message as a <space> delimited
 * string, which it is (the syslog protocol is very basic)
 */
syslog.timestamp = msg_part.slice(0,3).join(' ');
syslog.hostname = msg_part[3];
syslog.message = msg_part.slice(4).join(' ');

/* At the network level, keep counts of who is sending messages by
 * both facility and priority
 */
Network.metricAddCount('syslog:priority_' + syslog.priority, 1);
Network.metricAddDetailCount('syslog:priority_' +
 syslog.priority + '_detail',
 Flow.client.ipaddr, 1);
Network.metricAddCount('syslog:facility_' + syslog.facility, 1);
Network.metricAddDetailCount('syslog:facility_' +
 syslog.facility + '_detail',
 Flow.client.ipaddr, 1);

/* Devices receiving messages keep a count of who sent those messages
 * by facility and priority
 */
server.metricAddCount('syslog:priority_' + syslog.priority, 1);
server.metricAddDetailCount('syslog:priority_' +
 syslog.priority + '_detail',
 Flow.client.ipaddr, 1);
server.metricAddCount('syslog:facility_' + syslog.facility, 1);
server.metricAddDetailCount('syslog:facility_' +
 syslog.facility + '_detail',
 Flow.client.ipaddr, 1);

/* Devices sending messages keep a count of who they sent those messages
 * to by facility and priority
 */
client.metricAddCount('syslog:priority_' + syslog.priority, 1);
client.metricAddDetailCount('syslog:priority_' +
 syslog.priority + '_detail',
 Flow.server.ipaddr, 1);
client.metricAddCount('syslog:facility_' + syslog.facility, 1);
client.metricAddDetailCount('syslog:facility_' +
 syslog.facility + '_detail',
 Flow.server.ipaddr, 1);

data_as_json.protocol_fields = syslog;
data_as_json.ts = new Date();

//try {
// Remote.MongoDB.insert('payload.syslog', data_as_json);
//}
//catch (err) {
// Remote.Syslog.debug(JSON.stringify(data_as_json));
//}
debug('Syslog data: ' + JSON.stringify(data_as_json, null, 4));

Related classes

• Flow
• Network

ExtraHop 25.2 Trigger API Reference 311

• Buffer
• Remote.MongoDB
• Remote.Syslog

Example: Parse NTP with universal payload analysis
The trigger in the following example parses the network time protocol through universal payload analysis
(UPA).

Run the trigger on the following events: UDP_PAYLOAD

var buf = Flow.server.payload,
 flags,
 values,
 fmt,
 offset = 0,
 ntpData = {},
 proto = Flow.l7proto;
if ((proto !== 'NTP') || (buf === null)) {
 return;
}
// Parse individual flag values from flags byte
function parseFlags(flags) {
 return {
 'LI': flags >> 6,
 'VN': (flags & 0x3f) >> 3,
 'mode': flags & 0x7
 };
}

// Convert from NTP short format
function ntpShort(n) {
 return n / 65536.0;
}

// Convert integral part of NTP timestamp format to Date
function ntpTimestamp(n) {
 /* NTP dates start at 1900, subtract the difference
 * and convert to milliseconds */
 var ms = (n - 0x83aa7e80) * 1000;
 return new Date(ms);
}

// First part of NTP header
fmt = ('B' + // Flags (LI, VN, mode)
 'B' + // Stratum
 'b' + // Polling interval (signed)
 'b' + // Precision (signed)
 'I' + // Root delay
 'I'); // Root dispersion

values = buf.unpack(fmt);

offset = values.bytes;

flags = parseFlags(values[0]);
if (flags.VN !== 4) {
 // Expecting NTPv4
 return;
}

ExtraHop 25.2 Trigger API Reference 312

ntpData.flags = flags;
ntpData.stratum = values[1];
ntpData.poll = values[2];
ntpData.precision = values[3];
ntpData.rootDelay = ntpShort(values[4]);
ntpData.rootDispersion = ntpShort(values[5]);

// The next field, the reference ID, depends upon the stratum field
switch (ntpData.stratum)
{
case 0:
case 1:
 // Identifier string (4 bytes), and 4 NTP timestamps in two parts
 fmt = '4s8I';
 break;
default:
 // Unsigned int (based on IP), and 4 NTP timestamps in two parts
 fmt = 'I8I';
 break;
}
// Passing in offset enables you to continue parsing where you left off
values = buf.unpack(fmt, offset);
ntpData.referenceId = values[0];

// Only the integral parts of the timestamp are referenced here
ntpData.referenceTimestamp = ntpTimestamp(values[1]);
ntpData.originTimestamp = ntpTimestamp(values[3]);
ntpData.receiveTimestamp = ntpTimestamp(values[5]);
ntpData.transmitTimestamp = ntpTimestamp(values[7]);

debug('NTP data:' + JSON.stringify(ntpData, null, 4));

Related classes

• Buffer
• Flow
• UDP

Example: Record data to a session table
The trigger in this example records specific HTTP transactions to the session table and creates custom
network metrics that collect session expiration data.

Run the trigger on the following events: HTTP_REQUEST, SESSION_EXPIRE

// HTTP_REQUEST
if (event == "HTTP_REQUEST") {
 if (HTTP.userAgent === null) {
 return;
 }

 // Look for the OS name
 var re = /(Windows|Mac|Linux)/;
 var os = HTTP.userAgent.match(re);
 if (os === null) {
 return;
 }
 // Specify the matched string as the key for session table entry
 var os_name = os[0];

 var opts =

ExtraHop 25.2 Trigger API Reference 313

 {
 // Expire added entries after 30 seconds
 expire: 30,
 // Retain entries with normal priority if session table grows too
 large
 priority: Session.PRIORITY_NORMAL,
 // Make expired entries available on SESSION_EXPIRE events
 notify: true
 };
 // Ensure an entry for this key is present; an existing entry will not be
 replaced
 Session.add(os_name, 0, opts);
 // Increase the count for this entry
 var count = Session.increment(os_name);
 debug(os_name + ": " + count);
}

/* After 30 seconds, the accumulated per-OS counts appear in the
 Session.expiredKeys
 * list, accessible in the SESSION_EXPIRE event:
 */
 //SESSION_EXPIRE
if (event == "SESSION_EXPIRE"){
 var keys = Session.expiredKeys;
 for (var i = 0; i < keys.length; i++) {
 debug("count of " + keys[i].name + ": " + keys[i].value);
 if (keys[i].value > 500) {
 Network.metricAddCount("os-high-request-count", 1);
 Network.metricAddDetailCount("os-high-request-count",
 keys[i].name, 1);
 }
 }
}

Related classes

• HTTP
• Network
• Session

Example: Track SOAP requests
The trigger in this example tracks SOAP requests through the SOAPAction header, saves them into the flow
store, and creates custom network metrics that collect data about the transactions.

Note: Before you begin, confirm your SOAP implementation passes the necessary information
through the header.

Run the trigger on the following events: HTTP_REQUEST, HTTP_RESPONSE

var soapAction,
 headers = HTTP.headers,
 method,
 detailMethod,
 parts;

if (event === "HTTP_REQUEST") {
 soapAction = headers["SOAPAction"]
 if (soapAction != null) {
 Flow.store.soapAction = soapAction;

ExtraHop 25.2 Trigger API Reference 314

 }
}
else if (event === "HTTP_RESPONSE") {
 soapAction = Flow.store.soapAction;
 if (soapAction != null) {
 parts = soapAction.split("/");
 if (parts.length > 0) {
 method = soapAction.split("/")[1];
 }
 else {
 method = soapAction;
 }
 detailMethod = method + "_detail";
 Network.metricAddCount(method, 1);
 Network.metricAddDetailCount(detailMethod, Flow.client.ipaddr, 1);
 Network.metricAddSampleset("soap_proc", HTTP.processingTime);
 Network.metricAddDetailSampleset("soap_proc_detail", method,
 HTTP.processingTime);
 }
}

Related classes

• Flow
• HTTP
• Network

Example: Matching topnset keys
The triggers in this example illustrate topnset key matching by string and IPAddress, and includes advanced
key mapping.

Topnset key matching by string

Run the trigger on the following events: METRIC_RECORD_COMMIT

Configure advanced trigger options as shown in the following table:

Option Value

Metric Cycle 30sec

Metric Type extrahop.device.app

var stat = MetricRecord.fields['bytes_out'],
 id = MetricRecord.object.id,
 proto = 'HTTP2-SSL',
 entry;

entry = stat.lookup(proto);
if (entry !==null) {
 debug('Device ' + id + ' sent ' + entry.value + ' bytes over ' + proto);
}

Topnset key matching by IPAddress

Run the trigger on the following events: METRIC_RECORD_COMMIT

Configure advanced trigger options as shown in the following table:

ExtraHop 25.2 Trigger API Reference 315

Option Value

Metric Cycle 30sec

Metric Type extrahop.device.net_detail

var stat = MetricRecord.fields['bytes_out'],
 total = 0,
 entry,
 entries,
 i,
 ip = new IPAddress('192.168.112.1');

entries = stat.findEntries(ip);
for (i = 0; i < entries.length; i++) {
 entry = entries[i];
 total += entry.value;
}
Remote.Syslog.alert('IP ' + ip + ' sent ' + total + ' bytes.');

Advanced topnset key matching

Run the trigger on the following events: METRIC_RECORD_COMMIT

Configure advanced trigger options as shown in the following table:

Option Value

Metric Cycle 30sec

Metric Type extrahop.device.net_detail

var stat = MetricRecord.fields['bytes_out'],
 entry,
 entries,
 key,
 i;

entries = stat.findEntries({addr: /192.168.112.1*/, proto: 17});

debug('matched ' + entries.length + '/' + stat.entries.length + '
 entries')};

for (i = 0; i < entries.length; i++) {
 entry = entries[i];
 key = entry.key;
 Remote.Syslog.alert('unexpected outbound UDP traffic from: ' +
 JSON.stringify(key));
}

Related classes

• MetricRecord
• IPAddress
• Remote.Syslog

ExtraHop 25.2 Trigger API Reference 316

Example: Create an application container
The trigger in this example creates an application container based on traffic associated with a two-tier
application, and creates custom application metrics collected on HTTP and database events.

Run the trigger on the following events: HTTP_RESPONSE and DB_RESPONSE

/* Initialize the application object against which you will
 * commit specific HTTP and DB transactions. After traffic is
 * committed, an application container called "My App" will appear
 * in the Applications tab in the ExtraHop system.
 */

var myApp = Application("My App");

/* These configurable properties describe features that define
 * your application traffic.
 */

var myAppHTTPHost = "myapp.internal.example.com";
var myAppDatabaseName = "myappdb";
if (event == "HTTP_RESPONSE") {

 /* HTTP transactions can be committed to the application on
 * HTTP_RESPONSE events.
 */

 /* Commit this HTTP transaction only if the HTTP host header for
 * this response is defined and matches your application's HTTP host.
 */

 if (HTTP.host && (HTTP.host == myAppHTTPHost)) {
 myApp.commit();

 /* Capture custom metrics about user agents that experience
 * HTTP 40x or 50x responses.
 */

 if (HTTP.statusCode && (HTTP.statusCode >= 400))
{

 // Increment the overall count of 40x or 50x responses

 myApp.metricAddCount('myapp_40x_50x', 1);

 // Collect additional detail on referer, if any

 if (HTTP.referer) {
 myApp.metricAddDetailCount('myapp_40x_50x_refer_detail',
 HTTP.referer, 1);
 }
 }
 }

} else if (event == "DB_RESPONSE") {
 /* Database transactions can be committed to the application on
 * DB_RESPONSE events.
 *
 * Commit this database transaction only if the database name for
 * this response matches the name of our application database.
 */
 if (DB.database && (DB.database == myAppDatabaseName)) {

ExtraHop 25.2 Trigger API Reference 317

 myApp.commit();
 }
}

Related classes

• Application
• DB
• HTTP

	Overview
	Trigger API resources
	Data types for custom metrics
	Global functions
	General purpose classes
	Application
	Buffer
	Detection
	Device
	Discover
	ExternalData
	Flow
	FlowInterface
	FlowNetwork
	GeoIP
	IPAddress
	Network
	Session
	System
	ThreatIntel
	Trigger
	VLAN

	Protocol and network data classes
	AAA
	ActiveMQ
	AJP
	BACnet
	CDP
	CIFS
	DB
	DHCP
	DICOM
	DNP3
	DNS
	FIX
	FTP
	HL7
	HTTP
	IBMMQ
	ICA
	ICMP
	Kerberos
	LDAP
	LLDP
	LLMNR
	Memcache
	Modbus
	MongoDB
	MSMQ
	NetFlow
	NFS
	NMF
	NTLM
	NTP
	POP3
	QUIC
	RDP
	Redis
	RFB
	RPC
	RTCP
	RTP
	SCCP
	SDP
	SFlow
	SIP
	SLP
	SMPP
	SMTP
	SNMP
	SOCKS
	SSH
	SSL
	TCP
	Telnet
	TFTP
	Turn
	UDP
	WebSocket
	WSMAN

	Open data stream classes
	Remote.HTTP
	Remote.Kafka
	Remote.MongoDB
	Remote.Raw
	Remote.Syslog
	Remote

	Datastore classes
	AlertRecord
	Dataset
	MetricCycle
	MetricRecord
	Sampleset
	Topnset

	Deprecated API elements
	Advanced trigger options
	Examples
	Example: Collect ActiveMQ metrics
	Example: Send data to Azure with Remote.HTTP
	Example: Monitor SMB actions on devices
	Example: Track 500-level HTTP responses by customer ID and URI
	Example: Collect response metrics on database queries
	Example: Send discovered device data to a remote syslog server
	Example: Send data to Elasticsearch with Remote.HTTP
	Example: Access HTTP header attributes
	Example: Collect IBMMQ metrics
	Example: Record Memcache hits and misses
	Example: Parse memcache keys
	Example: Add metrics to the metric cycle store
	Example: Parse custom PoS messages with universal payload analysis
	Example: Parse syslog over TCP with universal payload analysis
	Example: Parse NTP with universal payload analysis
	Example: Record data to a session table
	Example: Track SOAP requests
	Example: Matching topnset keys
	Example: Create an application container

